Your browser doesn't support javascript.
loading
Endocardial fibroelastosis is caused by aberrant endothelial to mesenchymal transition.
Xu, Xingbo; Friehs, Ingeborg; Zhong Hu, Tachi; Melnychenko, Ivan; Tampe, Björn; Alnour, Fouzi; Iascone, Maria; Kalluri, Raghu; Zeisberg, Michael; Del Nido, Pedro J; Zeisberg, Elisabeth M.
Afiliación
  • Xu X; From the Department of Cardiology and Pneumology (X.X., F.A., E.M.Z.), Department of Nephrology and Rheumatology (B.T., M.Z.), University Medical Center of Göttingen, Georg-August University, Göttingen, Germany; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA (I
  • Friehs I; From the Department of Cardiology and Pneumology (X.X., F.A., E.M.Z.), Department of Nephrology and Rheumatology (B.T., M.Z.), University Medical Center of Göttingen, Georg-August University, Göttingen, Germany; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA (I
  • Zhong Hu T; From the Department of Cardiology and Pneumology (X.X., F.A., E.M.Z.), Department of Nephrology and Rheumatology (B.T., M.Z.), University Medical Center of Göttingen, Georg-August University, Göttingen, Germany; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA (I
  • Melnychenko I; From the Department of Cardiology and Pneumology (X.X., F.A., E.M.Z.), Department of Nephrology and Rheumatology (B.T., M.Z.), University Medical Center of Göttingen, Georg-August University, Göttingen, Germany; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA (I
  • Tampe B; From the Department of Cardiology and Pneumology (X.X., F.A., E.M.Z.), Department of Nephrology and Rheumatology (B.T., M.Z.), University Medical Center of Göttingen, Georg-August University, Göttingen, Germany; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA (I
  • Alnour F; From the Department of Cardiology and Pneumology (X.X., F.A., E.M.Z.), Department of Nephrology and Rheumatology (B.T., M.Z.), University Medical Center of Göttingen, Georg-August University, Göttingen, Germany; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA (I
  • Iascone M; From the Department of Cardiology and Pneumology (X.X., F.A., E.M.Z.), Department of Nephrology and Rheumatology (B.T., M.Z.), University Medical Center of Göttingen, Georg-August University, Göttingen, Germany; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA (I
  • Kalluri R; From the Department of Cardiology and Pneumology (X.X., F.A., E.M.Z.), Department of Nephrology and Rheumatology (B.T., M.Z.), University Medical Center of Göttingen, Georg-August University, Göttingen, Germany; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA (I
  • Zeisberg M; From the Department of Cardiology and Pneumology (X.X., F.A., E.M.Z.), Department of Nephrology and Rheumatology (B.T., M.Z.), University Medical Center of Göttingen, Georg-August University, Göttingen, Germany; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA (I
  • Del Nido PJ; From the Department of Cardiology and Pneumology (X.X., F.A., E.M.Z.), Department of Nephrology and Rheumatology (B.T., M.Z.), University Medical Center of Göttingen, Georg-August University, Göttingen, Germany; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA (I
  • Zeisberg EM; From the Department of Cardiology and Pneumology (X.X., F.A., E.M.Z.), Department of Nephrology and Rheumatology (B.T., M.Z.), University Medical Center of Göttingen, Georg-August University, Göttingen, Germany; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA (I
Circ Res ; 116(5): 857-66, 2015 Feb 27.
Article en En | MEDLINE | ID: mdl-25587097
ABSTRACT
RATIONALE Endocardial fibroelastosis (EFE) is a unique form of fibrosis, which forms a de novo subendocardial tissue layer encapsulating the myocardium and stunting its growth, and which is typically associated with congenital heart diseases of heterogeneous origin, such as hypoplastic left heart syndrome. Relevance of EFE was only recently highlighted through the establishment of staged biventricular repair surgery in infant patients with hypoplastic left heart syndrome, where surgical removal of EFE tissue has resulted in improvement in the restrictive physiology leading to the growth of the left ventricle in parallel with somatic growth. However, pathomechanisms underlying EFE formation are still scarce, and specific therapeutic targets are not yet known.

OBJECTIVE:

Here, we aimed to investigate the cellular origins of EFE tissue and to gain insights into the underlying molecular mechanisms to ultimately develop novel therapeutic strategies. METHODS AND

RESULTS:

By utilizing a novel EFE model of heterotopic transplantation of hearts from newborn reporter mice and by analyzing human EFE tissue, we demonstrate for the first time that fibrogenic cells within EFE tissue originate from endocardial endothelial cells via aberrant endothelial to mesenchymal transition. We further demonstrate that such aberrant endothelial to mesenchymal transition involving endocardial endothelial cells is caused by dysregulated transforming growth factor beta/bone morphogenetic proteins signaling and that this imbalance is at least in part caused by aberrant promoter methylation and subsequent transcriptional suppression of bone morphogenetic proteins 5 and 7. Finally, we provide evidence that supplementation of exogenous recombinant bone morphogenetic proteins 7 effectively ameliorates endothelial to mesenchymal transition and experimental EFE in rats.

CONCLUSIONS:

In summary, our data point to aberrant endothelial to mesenchymal transition as a common denominator of infant EFE development in heterogeneous, congenital heart diseases, and to bone morphogenetic proteins 7 as an effective treatment for EFE and its restriction of heart growth.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fibroelastosis Endocárdica / Endocardio / Epitelio / Transdiferenciación Celular / Mesodermo Tipo de estudio: Prognostic_studies Idioma: En Revista: Circ Res Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fibroelastosis Endocárdica / Endocardio / Epitelio / Transdiferenciación Celular / Mesodermo Tipo de estudio: Prognostic_studies Idioma: En Revista: Circ Res Año: 2015 Tipo del documento: Article