Your browser doesn't support javascript.
loading
Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation.
Norman, J Farley; Phillips, Flip; Cheeseman, Jacob R; Thomason, Kelsey E; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B; Lamirande, Davora.
Afiliación
  • Norman JF; Department of Psychological Sciences, Ogden College of Science and Engineering, Western Kentucky University, Bowling Green, Kentucky, United States of America.
  • Phillips F; Department of Psychology & Neuroscience Program, Skidmore College, Saratoga Springs, New York, United States of America.
  • Cheeseman JR; Department of Psychological Sciences, Ogden College of Science and Engineering, Western Kentucky University, Bowling Green, Kentucky, United States of America.
  • Thomason KE; Department of Psychological Sciences, Ogden College of Science and Engineering, Western Kentucky University, Bowling Green, Kentucky, United States of America.
  • Ronning C; Department of Psychological Sciences, Ogden College of Science and Engineering, Western Kentucky University, Bowling Green, Kentucky, United States of America.
  • Behari K; Department of Psychology & Neuroscience Program, Skidmore College, Saratoga Springs, New York, United States of America.
  • Kleinman K; Department of Psychology & Neuroscience Program, Skidmore College, Saratoga Springs, New York, United States of America.
  • Calloway AB; Department of Psychological Sciences, Ogden College of Science and Engineering, Western Kentucky University, Bowling Green, Kentucky, United States of America.
  • Lamirande D; Department of Psychological Sciences, Ogden College of Science and Engineering, Western Kentucky University, Bowling Green, Kentucky, United States of America.
PLoS One ; 11(2): e0149058, 2016.
Article en En | MEDLINE | ID: mdl-26863531
It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped "glaven") for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object's shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions-e.g., the participants' performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Reconocimiento Visual de Modelos / Percepción Visual / Percepción de Forma Límite: Adult / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Reconocimiento Visual de Modelos / Percepción Visual / Percepción de Forma Límite: Adult / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos