Your browser doesn't support javascript.
loading
Volumetric imaging with homogenised excitation and static field at 9.4 T.
Tse, Desmond H Y; Wiggins, Christopher J; Ivanov, Dimo; Brenner, Daniel; Hoffmann, Jens; Mirkes, Christian; Shajan, Gunamony; Scheffler, Klaus; Uludag, Kâmil; Poser, Benedikt A.
Afiliación
  • Tse DH; Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands. desmond.tse@maastrichtuniversity.nl.
  • Wiggins CJ; Scannexus BV, Maastricht, The Netherlands.
  • Ivanov D; Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
  • Brenner D; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
  • Hoffmann J; High Field MR Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
  • Mirkes C; High Field MR Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
  • Shajan G; Department for Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany.
  • Scheffler K; High Field MR Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
  • Uludag K; High Field MR Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
  • Poser BA; Department for Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany.
MAGMA ; 29(3): 333-45, 2016 Jun.
Article en En | MEDLINE | ID: mdl-26995492
ABSTRACT

OBJECTIVES:

To overcome the challenges of B0 and RF excitation inhomogeneity at ultra-high field MRI, a workflow for volumetric B0 and flip-angle homogenisation was implemented on a human 9.4 T scanner. MATERIALS AND

METHODS:

Imaging was performed with a 9.4 T human MR scanner (Siemens Medical Solutions, Erlangen, Germany) using a 16-channel parallel transmission system. B0- and B1-mapping were done using a dual-echo GRE and transmit phase-encoded DREAM, respectively. B0 shims and a small-tip-angle-approximation kT-points pulse were calculated with an off-line routine and applied to acquire T1- and T 2 (*) -weighted images with MPRAGE and 3D EPI, respectively.

RESULTS:

Over six in vivo acquisitions, the B0-distribution in a region-of-interest defined by a brain mask was reduced down to a full-width-half-maximum of 0.10 ± 0.01 ppm (39 ± 2 Hz). Utilising the kT-points pulses, the normalised RMSE of the excitation was decreased from CP-mode's 30.5 ± 0.9 to 9.2 ± 0.7 % with all B 1 (+)  voids eliminated. The SNR inhomogeneities and contrast variations in the T1- and T 2 (*) -weighted volumetric images were greatly reduced which led to successful tissue segmentation of the T1-weighted image.

CONCLUSION:

A 15-minute B0- and flip-angle homogenisation workflow, including the B0- and B1-map acquisitions, was successfully implemented and enabled us to reduce intensity and contrast variations as well as echo-planar image distortions in 9.4 T images.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Aumento de la Imagen / Imagen Eco-Planar Límite: Humans Idioma: En Revista: MAGMA Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2016 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Aumento de la Imagen / Imagen Eco-Planar Límite: Humans Idioma: En Revista: MAGMA Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2016 Tipo del documento: Article País de afiliación: Países Bajos