Depletion of NAD pool contributes to impairment of endothelial progenitor cell mobilization in diabetes.
Metabolism
; 65(6): 852-62, 2016 06.
Article
en En
| MEDLINE
| ID: mdl-27173464
OBJECTIVE: The impaired mobilization of endothelial progenitor cells (EPCs) from bone marrow (BM) critically contributes to the diabetes-associated vascular complications. Here, we investigated the relationship between the nicotinamide phosphoribosyltransferase (NAMPT)-controlled nicotinamide adenine dinucleotide (NAD) metabolism and the impaired mobilization of BM-derived EPCs in diabetic condition. METHODS: The NAMPT-NAD pool in BM and BM-derived EPCs in wild-type (WT) and diabetic db/db mice was determined. Nicotinamide, a natural substrate for NAD biosynthesis, was administrated for 2weeks in db/db mice to examine the influence of enhancing NAD pool on BM and blood EPCs number. The modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein in BM were measured using immunoblotting. The EPCs intracellular NAMPT level and NAD concentration, as well as the blood EPCs number, were compared between 9 healthy people and 16 patients with type 2 diabetes mellitus (T2DM). The T2DM patients were treated with nicotinamide for two weeks and then the blood EPCs number was determined. Moreover, the association between blood EPCs numbers and EPCs intracellular NAD(+)/NAMPT protein levels in 21 healthy individuals was determined. RESULTS: We found that NAD concentration and NAMPT expression in BM and BM-derived EPCs of db/db mice were significantly lower than those in WT mice BM. Enhancing NAD pool not only increased the EPCs intracellular NAD concentration and blood EPCs number, but also improved post-ischemic wound healing and blood reperfusion in db/db mice with hind-limb ischemia model. Enhancing NAD pool rescued the impaired modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein levels in db/db mice BM upon hind-limb ischemia. In addition, enhancing NAD pool significantly inhibited PARP and caspase-3 activates in db/db mice BM. The intracellular NAMPT-NAD pool was positively associated with blood EPCs number in healthy individuals. At last, we found that the EPC intracellular NAMPT and NAD(+) levels were reduced in T2DM patients and enhancing NAD pool elevated the circulating blood EPCs number in T2DM patients. CONCLUSION: Our results indicate that the depletion of NAD pool may contribute to the impairment of EPCs mobilization in diabetic condition, and imply the potential therapeutic value of nicotinamide in the prevention and treatment for cardiovascular complications of diabetes.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Diabetes Mellitus Tipo 2
/
Nicotinamida Fosforribosiltransferasa
/
Células Progenitoras Endoteliales
/
Isquemia
/
NAD
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
Metabolism
Año:
2016
Tipo del documento:
Article
País de afiliación:
China