Better diagnostic signatures from RNAseq data through use of auxiliary co-data.
Bioinformatics
; 33(10): 1572-1574, 2017 May 15.
Article
en En
| MEDLINE
| ID: mdl-28073760
SUMMARY: Our aim is to improve omics based prediction and feature selection using multiple sources of auxiliary information: co-data. Adaptive group regularized ridge regression (GRridge) was proposed to achieve this by estimating additional group-based penalty parameters through an empirical Bayes method at a low computational cost. We illustrate the GRridge method and software on RNA sequencing datasets. The method boosts the performance of an ordinary ridge regression and outperforms other classifiers. Post-hoc feature selection maintains the predictive ability of the classifier with far fewer markers. AVAILABILITY AND IMPLEMENTATION: GRridge is an R package that includes a vignette. It is freely available at ( https://bioconductor.org/packages/GRridge/ ). All information and R scripts used in this study, including those on retrieval and processing of the co-data, are available from http://github.com/markvdwiel/GRridgeCodata . CONTACT: mark.vdwiel@vumc.nl. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Programas Informáticos
/
Análisis de Secuencia de ARN
/
Genómica
/
Modelos Genéticos
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
/
Screening_studies
Límite:
Female
/
Humans
Idioma:
En
Revista:
Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2017
Tipo del documento:
Article
País de afiliación:
Países Bajos