Your browser doesn't support javascript.
loading
Better diagnostic signatures from RNAseq data through use of auxiliary co-data.
Novianti, Putri W; Snoek, Barbara C; Wilting, Saskia M; van de Wiel, Mark A.
Afiliación
  • Novianti PW; Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands.
  • Snoek BC; Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
  • Wilting SM; Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
  • van de Wiel MA; Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
Bioinformatics ; 33(10): 1572-1574, 2017 May 15.
Article en En | MEDLINE | ID: mdl-28073760
SUMMARY: Our aim is to improve omics based prediction and feature selection using multiple sources of auxiliary information: co-data. Adaptive group regularized ridge regression (GRridge) was proposed to achieve this by estimating additional group-based penalty parameters through an empirical Bayes method at a low computational cost. We illustrate the GRridge method and software on RNA sequencing datasets. The method boosts the performance of an ordinary ridge regression and outperforms other classifiers. Post-hoc feature selection maintains the predictive ability of the classifier with far fewer markers. AVAILABILITY AND IMPLEMENTATION: GRridge is an R package that includes a vignette. It is freely available at ( https://bioconductor.org/packages/GRridge/ ). All information and R scripts used in this study, including those on retrieval and processing of the co-data, are available from http://github.com/markvdwiel/GRridgeCodata . CONTACT: mark.vdwiel@vumc.nl. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Análisis de Secuencia de ARN / Genómica / Modelos Genéticos Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Female / Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Análisis de Secuencia de ARN / Genómica / Modelos Genéticos Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Female / Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: Países Bajos