Your browser doesn't support javascript.
loading
SnoReport 2.0: new features and a refined Support Vector Machine to improve snoRNA identification.
de Araujo Oliveira, João Victor; Costa, Fabrizio; Backofen, Rolf; Stadler, Peter Florian; Machado Telles Walter, Maria Emília; Hertel, Jana.
Afiliación
  • de Araujo Oliveira JV; Department of Computer Science, University of Brasilia, Brasília, BR-70910-900, Brazil. joaovicers@gmail.com.
  • Costa F; Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany.
  • Backofen R; Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany.
  • Stadler PF; Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Haertelstraße 16-18, Leipzig, D-04107, Germany.
  • Machado Telles Walter ME; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.
  • Hertel J; Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, Vienna, A-1090, Austria.
BMC Bioinformatics ; 17(Suppl 18): 464, 2016 Dec 15.
Article en En | MEDLINE | ID: mdl-28105919
BACKGROUND: snoReport uses RNA secondary structure prediction combined with machine learning as the basis to identify the two main classes of small nucleolar RNAs, the box H/ACA snoRNAs and the box C/D snoRNAs. Here, we present snoReport 2.0, which substantially improves and extends in the original method by: extracting new features for both box C/D and H/ACA box snoRNAs; developing a more sophisticated technique in the SVM training phase with recent data from vertebrate organisms and a careful choice of the SVM parameters C and γ; and using updated versions of tools and databases used for the construction of the original version of snoReport. To validate the new version and to demonstrate its improved performance, we tested snoReport 2.0 in different organisms. RESULTS: Results of the training and test phases of boxes H/ACA and C/D snoRNAs, in both versions of snoReport, are discussed. Validation on real data was performed to evaluate the predictions of snoReport 2.0. Our program was applied to a set of previously annotated sequences, some of them experimentally confirmed, of humans, nematodes, drosophilids, platypus, chickens and leishmania. We significantly improved the predictions for vertebrates, since the training phase used information of these organisms, but H/ACA box snoRNAs identification was improved for the other ones. CONCLUSION: We presented snoReport 2.0, to predict H/ACA box and C/D box snoRNAs, an efficient method to find true positives and avoid false positives in vertebrate organisms. H/ACA box snoRNA classifier showed an F-score of 93 % (an improvement of 10 % regarding the previous version), while C/D box snoRNA classifier, an F-Score of 94 % (improvement of 14 %). Besides, both classifiers exhibited performance measures above 90 %. These results show that snoReport 2.0 avoid false positives and false negatives, allowing to predict snoRNAs with high quality. In the validation phase, snoReport 2.0 predicted 67.43 % of vertebrate organisms for both classes. For Nematodes and Drosophilids, 69 % and 76.67 %, for H/ACA box snoRNAs were predicted, respectively, showing that snoReport 2.0 is good to identify snoRNAs in vertebrates and also H/ACA box snoRNAs in invertebrates organisms.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biología Computacional / ARN Nucleolar Pequeño / Eucariontes / Máquina de Vectores de Soporte Tipo de estudio: Diagnostic_studies / Evaluation_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biología Computacional / ARN Nucleolar Pequeño / Eucariontes / Máquina de Vectores de Soporte Tipo de estudio: Diagnostic_studies / Evaluation_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Brasil