Your browser doesn't support javascript.
loading
Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser.
Gati, Cornelius; Oberthuer, Dominik; Yefanov, Oleksandr; Bunker, Richard D; Stellato, Francesco; Chiu, Elaine; Yeh, Shin-Mei; Aquila, Andrew; Basu, Shibom; Bean, Richard; Beyerlein, Kenneth R; Botha, Sabine; Boutet, Sébastien; DePonte, Daniel P; Doak, R Bruce; Fromme, Raimund; Galli, Lorenzo; Grotjohann, Ingo; James, Daniel R; Kupitz, Christopher; Lomb, Lukas; Messerschmidt, Marc; Nass, Karol; Rendek, Kimberly; Shoeman, Robert L; Wang, Dingjie; Weierstall, Uwe; White, Thomas A; Williams, Garth J; Zatsepin, Nadia A; Fromme, Petra; Spence, John C H; Goldie, Kenneth N; Jehle, Johannes A; Metcalf, Peter; Barty, Anton; Chapman, Henry N.
Afiliación
  • Gati C; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Oberthuer D; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Yefanov O; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Bunker RD; School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand.
  • Stellato F; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Chiu E; School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand.
  • Yeh SM; School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand.
  • Aquila A; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Basu S; European XFEL GmbH, Hamburg 22761, Germany.
  • Bean R; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604.
  • Beyerlein KR; Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001.
  • Botha S; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Boutet S; European XFEL GmbH, Hamburg 22761, Germany.
  • DePonte DP; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Doak RB; Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
  • Fromme R; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
  • Galli L; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Grotjohann I; SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
  • James DR; Department of Physics, Arizona State University, Tempe, AZ 85287.
  • Kupitz C; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604.
  • Lomb L; Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001.
  • Messerschmidt M; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Nass K; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604.
  • Rendek K; Department of Physics, Arizona State University, Tempe, AZ 85287.
  • Shoeman RL; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604.
  • Wang D; Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001.
  • Weierstall U; Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
  • White TA; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
  • Williams GJ; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Zatsepin NA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604.
  • Fromme P; Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
  • Spence JC; Department of Physics, Arizona State University, Tempe, AZ 85287.
  • Goldie KN; Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001.
  • Jehle JA; Department of Physics, Arizona State University, Tempe, AZ 85287.
  • Metcalf P; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Barty A; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
  • Chapman HN; Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001.
Proc Natl Acad Sci U S A ; 114(9): 2247-2252, 2017 02 28.
Article en En | MEDLINE | ID: mdl-28202732
ABSTRACT
To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 µm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 µm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cristalografía / Granulovirus / Péptidos y Proteínas de Señalización Intercelular / Electrones / Rayos Láser Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cristalografía / Granulovirus / Péptidos y Proteínas de Señalización Intercelular / Electrones / Rayos Láser Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article País de afiliación: Alemania