Your browser doesn't support javascript.
loading
Predicting novel salivary biomarkers for the detection of pancreatic cancer using biological feature-based classification.
Liu, Huan-Jun; Guo, Yuan-Ying; Li, Du-Jun.
Afiliación
  • Liu HJ; Department of Hepatobiliary Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China.
  • Guo YY; Department of Preventive Medicine, School of Public Health, Jilin University, Jilin 130000, China.
  • Li DJ; Department of Clinical Laboratory, Yantai Yeda Hospital, No. 11 Taishan Road, Yantai, Shandong, 264000, China. Electronic address: lidujun336@163.com.
Pathol Res Pract ; 213(4): 394-399, 2017 Apr.
Article en En | MEDLINE | ID: mdl-28283209
AIM: The use of saliva as a diagnostic fluid enables non-invasive sampling and thus is a prospective sample for disease tests. This study fully utilized the information from the salivary transcriptome to characterize pancreatic cancer related genes and predict novel salivary biomarkers. METHODS: We calculated the enrichment scores of gene ontology (GO) and pathways annotated in Kyoto Encyclopedia of Genes and Genomes database (KEGG) for pancreatic cancer-related genes. Annotation of GO and KEGG pathway characterize the molecular features of genes. We employed Random Forest classification and incremental feature selection to identify the optimal features among them and predicted novel pancreatic cancer-related genes. RESULTS: A total of 2175 gene ontology and 79 KEGG pathway terms were identified as the optimal features to identify pancreatic cancer-related genes. A total of 516 novel genes were predicted using these features. We discovered 29 novel biomarkers based on the expression of these 516 genes in saliva. Using our new biomarkers, we achieved a higher accuracy (92%) for the detection of pancreatic cancer. Another independent expression dataset confirmed that these novel biomarkers performed better than the previously described markers alone. CONCLUSION: By analyzing the information of the salivary transcriptome, we predict pancreatic cancer-related genes and novel salivary gene markers for detection.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Saliva / Biomarcadores de Tumor / Perfilación de la Expresión Génica Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans Idioma: En Revista: Pathol Res Pract Año: 2017 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Saliva / Biomarcadores de Tumor / Perfilación de la Expresión Génica Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans Idioma: En Revista: Pathol Res Pract Año: 2017 Tipo del documento: Article País de afiliación: China