Your browser doesn't support javascript.
loading
Novel Gene and Network Associations Found for Acute Lymphoblastic Leukemia Using Case-Control and Family-Based Studies in Multiethnic Populations.
Nakka, Priyanka; Archer, Natalie P; Xu, Heng; Lupo, Philip J; Raphael, Benjamin J; Yang, Jun J; Ramachandran, Sohini.
Afiliación
  • Nakka P; Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island.
  • Archer NP; Center for Computational Molecular Biology, Brown University, Providence, Rhode Island.
  • Xu H; Maternal and Child Health Epidemiology Unit, Texas Department of State Health Services, Austin, Texas.
  • Lupo PJ; National Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
  • Raphael BJ; Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
  • Yang JJ; Department of Computer Science, Princeton University, Princeton, New Jersey.
  • Ramachandran S; Pharmaceutical Sciences Department, St. Jude Children's Research Hospital, Memphis, Tennessee.
Cancer Epidemiol Biomarkers Prev ; 26(10): 1531-1539, 2017 10.
Article en En | MEDLINE | ID: mdl-28751478
Background: Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, suggesting that germline variants influence ALL risk. Although multiple genome-wide association (GWA) studies have identified variants predisposing children to ALL, it remains unclear whether genetic heterogeneity affects ALL susceptibility and how interactions within and among genes containing ALL-associated variants influence ALL risk.Methods: Here, we jointly analyzed two published datasets of case-control GWA summary statistics along with germline data from ALL case-parent trios. We used the gene-level association method PEGASUS to identify genes with multiple variants associated with ALL. We then used PEGASUS gene scores as input to the network analysis algorithm HotNet2 to characterize the genomic architecture of ALL.Results: Using PEGASUS, we confirmed associations previously observed at genes such as ARID5B, IKZF1, CDKN2A/2B, and PIP4K2A, and we identified novel candidate gene associations. Using HotNet2, we uncovered significant gene subnetworks that may underlie inherited ALL risk: a subnetwork involved in B-cell differentiation containing the ALL-associated gene CEBPE, and a subnetwork of homeobox genes, including MEIS1Conclusions: Gene and network analysis uncovered loci associated with ALL that are missed by GWA studies, such as MEIS1 Furthermore, ALL-associated loci do not appear to interact directly with each other to influence ALL risk, and instead appear to influence leukemogenesis through multiple, complex pathways.Impact: We present a new pipeline for post hoc analysis of association studies that yields new insight into the etiology of ALL and can be applied in future studies to shed light on the genomic underpinnings of cancer. Cancer Epidemiol Biomarkers Prev; 26(10); 1531-9. ©2017 AACR.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Leucemia-Linfoma Linfoblástico de Células Precursoras / Estudio de Asociación del Genoma Completo Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Child, preschool / Humans Idioma: En Revista: Cancer Epidemiol Biomarkers Prev Asunto de la revista: BIOQUIMICA / EPIDEMIOLOGIA / NEOPLASIAS Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Leucemia-Linfoma Linfoblástico de Células Precursoras / Estudio de Asociación del Genoma Completo Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Child, preschool / Humans Idioma: En Revista: Cancer Epidemiol Biomarkers Prev Asunto de la revista: BIOQUIMICA / EPIDEMIOLOGIA / NEOPLASIAS Año: 2017 Tipo del documento: Article