Your browser doesn't support javascript.
loading
Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations.
Nikolic, Nela; Schreiber, Frank; Dal Co, Alma; Kiviet, Daniel J; Bergmiller, Tobias; Littmann, Sten; Kuypers, Marcel M M; Ackermann, Martin.
Afiliación
  • Nikolic N; Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
  • Schreiber F; Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland.
  • Dal Co A; Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
  • Kiviet DJ; Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
  • Bergmiller T; Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland.
  • Littmann S; Division of Biodeterioration and Reference Organisms, Department of Materials and Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
  • Kuypers MMM; Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
  • Ackermann M; Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland.
PLoS Genet ; 13(12): e1007122, 2017 12.
Article en En | MEDLINE | ID: mdl-29253903
ABSTRACT
While we have good understanding of bacterial metabolism at the population level, we know little about the metabolic behavior of individual cells do single cells in clonal populations sometimes specialize on different metabolic pathways? Such metabolic specialization could be driven by stochastic gene expression and could provide individual cells with growth benefits of specialization. We measured the degree of phenotypic specialization in two parallel metabolic pathways, the assimilation of glucose and arabinose. We grew Escherichia coli in chemostats, and used isotope-labeled sugars in combination with nanometer-scale secondary ion mass spectrometry and mathematical modeling to quantify sugar assimilation at the single-cell level. We found large variation in metabolic activities between single cells, both in absolute assimilation and in the degree to which individual cells specialize in the assimilation of different sugars. Analysis of transcriptional reporters indicated that this variation was at least partially based on cell-to-cell variation in gene expression. Metabolic differences between cells in clonal populations could potentially reduce metabolic incompatibilities between different pathways, and increase the rate at which parallel reactions can be performed.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Escherichia coli / Metabolismo de los Hidratos de Carbono Idioma: En Revista: PLoS Genet Asunto de la revista: GENETICA Año: 2017 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Escherichia coli / Metabolismo de los Hidratos de Carbono Idioma: En Revista: PLoS Genet Asunto de la revista: GENETICA Año: 2017 Tipo del documento: Article País de afiliación: Suiza