Your browser doesn't support javascript.
loading
Structural effects of extracellular loop mutations in CFTR helical hairpins.
Chang, Yuan-Heng; Stone, Tracy A; Chin, Stephanie; Glibowicka, Mira; Bear, Christine E; Deber, Charles M.
Afiliación
  • Chang YH; Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
  • Stone TA; Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
  • Chin S; Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
  • Glibowicka M; Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
  • Bear CE; Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
  • Deber CM; Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Electronic address: deber@sickkids.ca.
Biochim Biophys Acta Biomembr ; 1860(5): 1092-1098, 2018 May.
Article en En | MEDLINE | ID: mdl-29307731
ABSTRACT
Missense mutations constitute 40% of 2000 cystic fibrosis-phenotypic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) database, yet the precise mechanism as to how a point mutation can render the entire 1480-residue CFTR protein dysfunctional is not well-understood. Here we investigate the structural effects of two CF-phenotypic mutations - glutamic acid to glycine at position 217 (E217G) and glutamine to arginine at position 220 (Q220R) - in the extracellular (ECL2) loop region of human CFTR using helical hairpin constructs derived from transmembrane (TM) helices 3 and 4 of the first membrane domain. We systematically replaced the wild type (WT) residues E217 and Q220 with the subset of missense mutations that could arise through a single nucleotide change in their respective codons. Circular dichroism spectra of E217G revealed that a significant increase in helicity vs. WT arises in the membrane-mimetic environment of sodium dodecylsulfate (SDS) micelles, while this mutant showed a similar gel shift to WT on SDS-PAGE gels. In contrast, the CF-mutant Q220R showed similar helicity but an increased gel shift vs. WT. These structural variations are compared with the maturation levels of the corresponding mutant full-length CFTRs, which we found are reduced to approx. 50% for E217G and 30% for Q220R vs. WT. The overall results with CFTR hairpins illustrate the range of impacts that single mutations can evoke in intramolecular protein-protein and/or protein-lipid interactions - and the levels to which corresponding mutations in full-length CFTR may be flagged by quality control mechanisms during biosynthesis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regulador de Conductancia de Transmembrana de Fibrosis Quística / Mutación Límite: Humans Idioma: En Revista: Biochim Biophys Acta Biomembr Año: 2018 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regulador de Conductancia de Transmembrana de Fibrosis Quística / Mutación Límite: Humans Idioma: En Revista: Biochim Biophys Acta Biomembr Año: 2018 Tipo del documento: Article País de afiliación: Canadá