Your browser doesn't support javascript.
loading
Deep Learning data integration for better risk stratification models of bladder cancer.
Poirion, Olivier B; Chaudhary, Kumardeep; Garmire, Lana X.
Afiliación
  • Poirion OB; Epidemiology Program, University of Hawaii Cancer Center Honolulu, HI 96813, USA.
  • Chaudhary K; These authors contributed equally to the work.
  • Garmire LX; Epidemiology Program, University of Hawaii Cancer Center Honolulu, HI 96813, USA.
AMIA Jt Summits Transl Sci Proc ; 2017: 197-206, 2018.
Article en En | MEDLINE | ID: mdl-29888072
We propose an unsupervised multi-omics integration pipeline, using deep-learning autoencoder algorithm, to predict the survival subtypes in bladder cancer (BC). We used TCGA dataset comprising mRNA, miRNA and methylation to infer two survival subtypes. We then constructed a supervised classification model to predict the survival subgroups of any new individual sample. Our training data gave two subgroups with significant survival differences (p-value=8e-4), where high-risk survival subgroup was enriched with KRT6/14 overexpression and PI3K-Akt pathways. We tested the robustness of model by randomly splitting the main dataset into multiple training and test folds, which gave overall significant p-values. Then, we successfully inferred the subtypes for a subset of samples kept as test dataset (p-value=0.03). We further applied our pipeline to predict the survival subgroups from another validation dataset with miRNA data (p-value=0.02). Conclusively, present pipeline is an effective approach to infer the survival subtype of a new sample, exemplified by BC.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: AMIA Jt Summits Transl Sci Proc Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: AMIA Jt Summits Transl Sci Proc Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos