Your browser doesn't support javascript.
loading
Segmentation of glandular epithelium in colorectal tumours to automatically compartmentalise IHC biomarker quantification: A deep learning approach.
Van Eycke, Yves-Rémi; Balsat, Cédric; Verset, Laurine; Debeir, Olivier; Salmon, Isabelle; Decaestecker, Christine.
Afiliación
  • Van Eycke YR; DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), CPI 305/1, Rue Adrienne Bolland, 8, 6041 Gosselies, Belgium; Laboratories of Image, Signal processing & Acoustics, Université Libre de Bruxelles (ULB), CPI 165/57, Avenue Franklin Roosevelt 50, Brussels 10
  • Balsat C; DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), CPI 305/1, Rue Adrienne Bolland, 8, 6041 Gosselies, Belgium.
  • Verset L; Department of Pathology, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, Brussels 1070, Belgium.
  • Debeir O; Laboratories of Image, Signal processing & Acoustics, Université Libre de Bruxelles (ULB), CPI 165/57, Avenue Franklin Roosevelt 50, Brussels 1050 , Belgium; MIP, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), CPI 305/1, Rue Adrienne Bolland, 8, 6041 Gosselies,
  • Salmon I; DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), CPI 305/1, Rue Adrienne Bolland, 8, 6041 Gosselies, Belgium; Department of Pathology, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, Brussels 1070, Belgium.
  • Decaestecker C; DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), CPI 305/1, Rue Adrienne Bolland, 8, 6041 Gosselies, Belgium; Laboratories of Image, Signal processing & Acoustics, Université Libre de Bruxelles (ULB), CPI 165/57, Avenue Franklin Roosevelt 50, Brussels 10
Med Image Anal ; 49: 35-45, 2018 10.
Article en En | MEDLINE | ID: mdl-30081241
In this paper, we propose a method for automatically annotating slide images from colorectal tissue samples. Our objective is to segment glandular epithelium in histological images from tissue slides submitted to different staining techniques, including usual haematoxylin-eosin (H&E) as well as immunohistochemistry (IHC). The proposed method makes use of Deep Learning and is based on a new convolutional network architecture. Our method achieves better performances than the state of the art on the H&E images of the GlaS challenge contest, whereas it uses only the haematoxylin colour channel extracted by colour deconvolution from the RGB images in order to extend its applicability to IHC. The network only needs to be fine-tuned on a small number of additional examples to be accurate on a new IHC dataset. Our approach also includes a new method of data augmentation to achieve good generalisation when working with different experimental conditions and different IHC markers. We show that our methodology enables to automate the compartmentalisation of the IHC biomarker analysis, results concurring highly with manual annotations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Interpretación de Imagen Asistida por Computador / Neoplasias Colorrectales / Biomarcadores de Tumor / Aprendizaje Profundo Límite: Humans Idioma: En Revista: Med Image Anal Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Interpretación de Imagen Asistida por Computador / Neoplasias Colorrectales / Biomarcadores de Tumor / Aprendizaje Profundo Límite: Humans Idioma: En Revista: Med Image Anal Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2018 Tipo del documento: Article