Your browser doesn't support javascript.
loading
Asymmetric Processing of DNA Ends at a Double-Strand Break Leads to Unconstrained Dynamics and Ectopic Translocation.
Marcomini, Isabella; Shimada, Kenji; Delgoshaie, Neda; Yamamoto, Io; Seeber, Andrew; Cheblal, Anais; Horigome, Chihiro; Naumann, Ulrike; Gasser, Susan M.
Afiliación
  • Marcomini I; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, 4056 Basel, Switzerland.
  • Shimada K; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
  • Delgoshaie N; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
  • Yamamoto I; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
  • Seeber A; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
  • Cheblal A; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, 4056 Basel, Switzerland.
  • Horigome C; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
  • Naumann U; Novartis Institutes of Biomedical Research, 4002 Basel, Switzerland.
  • Gasser SM; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, 4056 Basel, Switzerland. Electronic address: susan.gasser@fmi.ch.
Cell Rep ; 24(10): 2614-2628.e4, 2018 09 04.
Article en En | MEDLINE | ID: mdl-30184497
ABSTRACT
Multiple pathways regulate the repair of double-strand breaks (DSBs) to suppress potentially dangerous ectopic recombination. Both sequence and chromatin context are thought to influence pathway choice between non-homologous end-joining (NHEJ) and homology-driven recombination. To test the effect of repetitive sequences on break processing, we have inserted TG-rich repeats on one side of an inducible DSB at the budding yeast MAT locus on chromosome III. Five clustered Rap1 sites within a break-proximal TG repeat are sufficient to block Mre11-Rad50-Xrs2 recruitment, impair resection, and favor elongation by telomerase. The two sides of the break lose end-to-end tethering and show enhanced, uncoordinated movement. Only the TG-free side is resected and shifts to the nuclear periphery. In contrast to persistent DSBs without TG repeats that are repaired by imprecise NHEJ, nearly all survivors of repeat-proximal DSBs repair the break by a homology-driven, non-reciprocal translocation from ChrIII-R to ChrVII-L. This suppression of imprecise NHEJ at TG-repeat-flanked DSBs requires the Uls1 translocase activity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Translocación Genética / Telómero / Reparación del ADN / Roturas del ADN de Doble Cadena Idioma: En Revista: Cell Rep Año: 2018 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Translocación Genética / Telómero / Reparación del ADN / Roturas del ADN de Doble Cadena Idioma: En Revista: Cell Rep Año: 2018 Tipo del documento: Article País de afiliación: Suiza