Your browser doesn't support javascript.
loading
StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer.
Kunisch, Elke; Knauf, Anne-Kathrin; Hesse, Eliane; Freudenberg, Uwe; Werner, Carsten; Bothe, Friederike; Diederichs, Solvig; Richter, Wiltrud.
Afiliación
  • Kunisch E; Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.
Biofabrication ; 11(1): 015001, 2018 10 30.
Article en En | MEDLINE | ID: mdl-30376451
ABSTRACT
Repaired cartilage tissue lacks the typical zonal structure of healthy native cartilage needed for appropriate function. Current grafts for treatment of full thickness cartilage defects focus primarily on a nonzonal design and this may be a reason why inferior nonzonal regeneration tissue developed in vivo. No biomaterial-based solutions have been developed so far to induce a proper zonal architecture into a non-mineralized and a calcified cartilage layer. The objective was to grow bizonal cartilage with a calcified cartilage bottom zone wherein main tissue development is occurring in vivo. We hypothesized that starPEG/heparin-hydrogel owing to the glycosaminoglycan heparin contained as a building-block would prevent mineralization of the upper cartilage zone and be beneficial in inhibiting long-term progression of calcified cartilage into bone. MSCs were pre-cultured as self-assembling non-mineralized cell discs before a chondrocyte-seeded fibrin- or starPEG/heparin-hydrogel layer was cast on top directly before ectopic implantation. Bizonal cartilage with a calcified bottom-layer developed in vivo showing stronger mineralization compared to in vitro samples, but the hydrogel strongly determined outcome. Zonal fibrin-constructs lost volume and allowed non-organized expansion of collagen type X, ALP-activity and mineralization from the bottom-layer into upper regions, whereas zonal starPEG/heparin-constructs were of stable architecture. While non-zonal MSCs-derived discs formed bone over 12 weeks, the starPEG/heparin-chondrocyte layer prevented further progression of calcified cartilage into bone tissue. Conclusively, starPEG/heparin-hydrogel-controlled and cell-type mediated spatiotemporal regulation allowed in vivo growth of bizonal cartilage with a stable calcified cartilage layer. Altogether our work is an important milestone encouraging direct in vivo growth of organized cartilage after biofabrication.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polietilenglicoles / Heparina / Cartílago Articular / Condrocitos / Hidrogeles / Ingeniería de Tejidos / Andamios del Tejido Tipo de estudio: Evaluation_studies Límite: Animals Idioma: En Revista: Biofabrication Asunto de la revista: BIOTECNOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polietilenglicoles / Heparina / Cartílago Articular / Condrocitos / Hidrogeles / Ingeniería de Tejidos / Andamios del Tejido Tipo de estudio: Evaluation_studies Límite: Animals Idioma: En Revista: Biofabrication Asunto de la revista: BIOTECNOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Alemania