Your browser doesn't support javascript.
loading
Analysis of 3D genomic interactions identifies candidate host genes that transposable elements potentially regulate.
Raviram, Ramya; Rocha, Pedro P; Luo, Vincent M; Swanzey, Emily; Miraldi, Emily R; Chuong, Edward B; Feschotte, Cédric; Bonneau, Richard; Skok, Jane A.
Afiliación
  • Raviram R; Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.
  • Rocha PP; Department of Biology, New York University, New York, NY, 10003, USA.
  • Luo VM; Ludwig Institute for Cancer Research, La Jolla, CA, USA.
  • Swanzey E; Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.
  • Miraldi ER; Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA.
  • Chuong EB; Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.
  • Feschotte C; Department of Biology, New York University, New York, NY, 10003, USA.
  • Bonneau R; Department of Developmental Genetics, New York University School of Medicine, New York, NY, 10016, USA.
  • Skok JA; Department of Biology, New York University, New York, NY, 10003, USA.
Genome Biol ; 19(1): 216, 2018 12 13.
Article en En | MEDLINE | ID: mdl-30541598
BACKGROUND: The organization of chromatin in the nucleus plays an essential role in gene regulation. About half of the mammalian genome comprises transposable elements. Given their repetitive nature, reads associated with these elements are generally discarded or randomly distributed among elements of the same type in genome-wide analyses. Thus, it is challenging to identify the activities and properties of individual transposons. As a result, we only have a partial understanding of how transposons contribute to chromatin folding and how they impact gene regulation. RESULTS: Using PCR and Capture-based chromosome conformation capture (3C) approaches, collectively called 4Tran, we take advantage of the repetitive nature of transposons to capture interactions from multiple copies of endogenous retrovirus (ERVs) in the human and mouse genomes. With 4Tran-PCR, reads are selectively mapped to unique regions in the genome. This enables the identification of transposable element interaction profiles for individual ERV families and integration events specific to particular genomes. With this approach, we demonstrate that transposons engage in long-range intra-chromosomal interactions guided by the separation of chromosomes into A and B compartments as well as topologically associated domains (TADs). In contrast to 4Tran-PCR, Capture-4Tran can uniquely identify both ends of an interaction that involve retroviral repeat sequences, providing a powerful tool for uncovering the individual transposable element insertions that interact with and potentially regulate target genes. CONCLUSIONS: 4Tran provides new insight into the manner in which transposons contribute to chromosome architecture and identifies target genes that transposable elements can potentially control.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Elementos Transponibles de ADN / Regulación de la Expresión Génica / Genómica Límite: Animals / Humans Idioma: En Revista: Genome Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Elementos Transponibles de ADN / Regulación de la Expresión Génica / Genómica Límite: Animals / Humans Idioma: En Revista: Genome Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos