CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy.
Hum Vaccin Immunother
; 15(5): 1126-1132, 2019.
Article
en En
| MEDLINE
| ID: mdl-30735463
The advent of engineered T cells as a form of immunotherapy marks the beginning of a new era in medicine, providing a transformative way to combat complex diseases such as cancer. Following FDA approval of CAR T cells directed against the CD19 protein for the treatment of acute lymphoblastic leukemia and diffuse large B cell lymphoma, CAR T cells are poised to enter mainstream oncology. Despite this success, a number of patients are unable to receive this therapy due to inadequate T cell numbers or rapid disease progression. Furthermore, lack of response to CAR T cell treatment is due in some cases to intrinsic autologous T cell defects and/or the inability of these cells to function optimally in a strongly immunosuppressive tumor microenvironment. We describe recent efforts to overcome these limitations using CRISPR/Cas9 technology, with the goal of enhancing potency and increasing the availability of CAR-based therapies. We further discuss issues related to the efficiency/scalability of CRISPR/Cas9-mediated genome editing in CAR T cells and safety considerations. By combining the tools of synthetic biology such as CARs and CRISPR/Cas9, we have an unprecedented opportunity to optimally program T cells and improve adoptive immunotherapy for most, if not all future patients.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Inmunoterapia Adoptiva
/
Sistemas CRISPR-Cas
/
Edición Génica
/
Receptores Quiméricos de Antígenos
Límite:
Humans
Idioma:
En
Revista:
Hum Vaccin Immunother
Año:
2019
Tipo del documento:
Article
País de afiliación:
Estados Unidos