Your browser doesn't support javascript.
loading
A Sparse Autoencoder and Softmax Regression Based Diagnosis Method for the Attachment on the Blades of Marine Current Turbine.
Zheng, Yilai; Wang, Tianzhen; Xin, Bin; Xie, Tao; Wang, Yide.
Afiliación
  • Zheng Y; Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China. zhengyleli@163.com.
  • Wang T; Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China. tzwang@shmtu.edu.cn.
  • Xin B; Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China. xbbx385@163.com.
  • Xie T; Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China. 201840210002@stu.shmtu.edu.cn.
  • Wang Y; Institut d'Electronique et Telecommunications de Rennes (IETR), University of Nantes, 44306 Nantes, France. yide.wang@polytech.univ-nantes.fr.
Sensors (Basel) ; 19(4)2019 Feb 17.
Article en En | MEDLINE | ID: mdl-30781577
The development and application of marine current energy are attracting more and more attention around the world. Due to the hardness of its working environment, it is important and difficult to study the fault diagnosis of a marine current generation system. In this paper, an underwater image is chosen as the fault-diagnosing signal, after different sensors are compared. This paper proposes a diagnosis method based on the sparse autoencoder (SA) and softmax regression (SR). The SA is used to extract the features and SR is used to classify them. Images are used to monitor whether the blade is attached by benthos and to determine its corresponding degree of attachment. Compared with other methods, the experiment results show that the proposed method can diagnose the blade attachment with higher accuracy.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Sensors (Basel) Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Sensors (Basel) Año: 2019 Tipo del documento: Article País de afiliación: China