Your browser doesn't support javascript.
loading
Mechanism of glucocerebrosidase activation and dysfunction in Gaucher disease unraveled by molecular dynamics and deep learning.
Romero, Raquel; Ramanathan, Arvind; Yuen, Tony; Bhowmik, Debsindhu; Mathew, Mehr; Munshi, Lubna Bashir; Javaid, Seher; Bloch, Madison; Lizneva, Daria; Rahimova, Alina; Khan, Ayesha; Taneja, Charit; Kim, Se-Min; Sun, Li; New, Maria I; Haider, Shozeb; Zaidi, Mone.
Afiliación
  • Romero R; Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, WC1N 1AX London, United Kingdom.
  • Ramanathan A; Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830.
  • Yuen T; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Bhowmik D; Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Mathew M; Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830.
  • Munshi LB; Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Javaid S; Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Bloch M; Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Lizneva D; Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Rahimova A; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Khan A; Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Taneja C; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Kim SM; Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Sun L; Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • New MI; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Haider S; Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Zaidi M; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
Proc Natl Acad Sci U S A ; 116(11): 5086-5095, 2019 03 12.
Article en En | MEDLINE | ID: mdl-30808805
ABSTRACT
The lysosomal enzyme glucocerebrosidase-1 (GCase) catalyzes the cleavage of a major glycolipid glucosylceramide into glucose and ceramide. The absence of fully functional GCase leads to the accumulation of its lipid substrates in lysosomes, causing Gaucher disease, an autosomal recessive disorder that displays profound genotype-phenotype nonconcordance. More than 250 disease-causing mutations in GBA1, the gene encoding GCase, have been discovered, although only one of these, N370S, causes 70% of disease. Here, we have used a knowledge-based docking protocol that considers experimental data of protein-protein binding to generate a complex between GCase and its known facilitator protein saposin C (SAPC). Multiscale molecular-dynamics simulations were used to study lipid self-assembly, membrane insertion, and the dynamics of the interactions between different components of the complex. Deep learning was applied to propose a model that explains the mechanism of GCase activation, which requires SAPC. Notably, we find that conformational changes in the loops at the entrance of the substrate-binding site are stabilized by direct interactions with SAPC and that the loss of such interactions induced by N370S and another common mutation, L444P, result in destabilization of the complex and reduced GCase activation. Our findings provide an atomistic-level explanation for GCase activation and the precise mechanism through which N370S and L444P cause Gaucher disease.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular / Aprendizaje Profundo / Enfermedad de Gaucher / Glucosilceramidasa Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular / Aprendizaje Profundo / Enfermedad de Gaucher / Glucosilceramidasa Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido