Your browser doesn't support javascript.
loading
A quantitative model to predict pathogenicity of missense variants in the TP53 gene.
Fortuno, Cristina; Cipponi, Arcadi; Ballinger, Mandy L; Tavtigian, Sean V; Olivier, Magali; Ruparel, Vatsal; Haupt, Ygal; Haupt, Sue; Study, International Sarcoma Kindred; Tucker, Kathy; Spurdle, Amanda B; Thomas, David M; James, Paul A.
Afiliación
  • Fortuno C; Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
  • Cipponi A; Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
  • Ballinger ML; Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
  • Tavtigian SV; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah.
  • Olivier M; Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France.
  • Ruparel V; Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
  • Haupt Y; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
  • Haupt S; Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
  • Study ISK; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
  • Tucker K; Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
  • Spurdle AB; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
  • Thomas DM; Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
  • James PA; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
Hum Mutat ; 40(6): 788-800, 2019 06.
Article en En | MEDLINE | ID: mdl-30840781
Germline pathogenic variants in the TP53 gene cause Li-Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types. Identification of individuals carrying a TP53 pathogenic variant is linked to clinical management decisions, such as the avoidance of radiotherapy and use of high-intensity screening programs. The aim of this study was to develop an evidence-based quantitative model that integrates independent in silico data (Align-GVGD and BayesDel) and somatic to germline ratio (SGR), to assign pathogenicity to every possible missense variant in the TP53 gene. To do this, a likelihood ratio for pathogenicity (LR) was derived from each component calibrated using reference sets of assumed pathogenic and benign missense variants. A posterior probability of pathogenicity was generated by combining LRs, and algorithm outputs were validated using different approaches. A total of 730 TP53 missense variants could be assigned to a clinically interpretable class. The outputs of the model correlated well with existing clinical information, functional data, and ClinVar classifications. In conclusion, these quantitative outputs provide the basis for individualized assessment of cancer risk useful for clinical interpretation. In addition, we propose the value of the novel SGR approach for use within the ACMG/AMP guidelines for variant classification.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteína p53 Supresora de Tumor / Síndrome de Li-Fraumeni / Biología Computacional / Mutación Missense Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Hum Mutat Asunto de la revista: GENETICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteína p53 Supresora de Tumor / Síndrome de Li-Fraumeni / Biología Computacional / Mutación Missense Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Hum Mutat Asunto de la revista: GENETICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Australia