Your browser doesn't support javascript.
loading
GSEPD: a Bioconductor package for RNA-seq gene set enrichment and projection display.
Stamm, Karl; Tomita-Mitchell, Aoy; Bozdag, Serdar.
Afiliación
  • Stamm K; Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, USA.
  • Tomita-Mitchell A; Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
  • Bozdag S; Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
BMC Bioinformatics ; 20(1): 115, 2019 Mar 06.
Article en En | MEDLINE | ID: mdl-30841846
BACKGROUND: RNA-seq, wherein RNA transcripts expressed in a sample are sequenced and quantified, has become a widely used technique to study disease and development. With RNA-seq, transcription abundance can be measured, differential expression genes between groups and functional enrichment of those genes can be computed. However, biological insights from RNA-seq are often limited by computational analysis and the enormous volume of resulting data, preventing facile and meaningful review and interpretation of gene expression profiles. Particularly, in cases where the samples under study exhibit uncontrolled variation, deeper analysis of functional enrichment would be necessary to visualize samples' gene expression activity under each biological function. RESULTS: We developed a Bioconductor package rgsepd that streamlines RNA-seq data analysis by wrapping commonly used tools DESeq2 and GOSeq in a user-friendly interface and performs a gene-subset linear projection to cluster heterogeneous samples by Gene Ontology (GO) terms. Rgsepd computes significantly enriched GO terms for each experimental condition and generates multidimensional projection plots highlighting how each predefined gene set's multidimensional expression may delineate samples. CONCLUSIONS: The rgsepd serves to automate differential expression, functional annotation, and exploratory data analyses to highlight subtle expression differences among samples based on each significant biological function.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Análisis de Secuencia de ARN Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Análisis de Secuencia de ARN Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos