Your browser doesn't support javascript.
loading
Secondary sulfur metabolism in cellular signalling and oxidative stress responses.
Chan, Kai Xun; Phua, Su Yin; Van Breusegem, Frank.
Afiliación
  • Chan KX; Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium.
  • Phua SY; VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium.
  • Van Breusegem F; Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium.
J Exp Bot ; 70(16): 4237-4250, 2019 08 19.
Article en En | MEDLINE | ID: mdl-30868163
ABSTRACT
The sulfur metabolism pathway in plants produces a variety of compounds that are central to the acclimation response to oxidative stresses such as drought and high light. Primary sulfur assimilation provides the amino acid cysteine, which is utilized in protein synthesis and as a precursor for the cellular redox buffer glutathione. In contrast, the secondary sulfur metabolism pathway produces sulfated compounds such as glucosinolates and sulfated peptides, as well as a corresponding by-product 3'-phosphoadenosine 5'-phosphate (PAP). Emerging evidence over the past decade has shown that secondary sulfur metabolism also has a crucial engagement during oxidative stress. This occurs across various cellular, tissue, and organismal levels including chloroplast-to-nucleus retrograde signalling events mediated by PAP, modulation of hormonal signalling by sulfated compounds and PAP, control of physiological responses such as stomatal closure, and potential regulation of plant growth. In this review, we examine the contribution of the different components of plant secondary metabolism to oxidative stress homeostasis, and how this pathway is metabolically regulated. We further outline the key outstanding questions in the field that are necessary to understand how and why this 'specialized' metabolic pathway plays significant roles in plant oxidative stress tolerance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Azufre / Arabidopsis / Estrés Oxidativo Idioma: En Revista: J Exp Bot Asunto de la revista: BOTANICA Año: 2019 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Azufre / Arabidopsis / Estrés Oxidativo Idioma: En Revista: J Exp Bot Asunto de la revista: BOTANICA Año: 2019 Tipo del documento: Article País de afiliación: Bélgica