Your browser doesn't support javascript.
loading
Data-adaptive multi-locus association testing in subjects with arbitrary genealogical relationships.
Gong, Gail; Wang, Wei; Hsieh, Chih-Lin; Van Den Berg, David J; Haiman, Christopher; Oakley-Girvan, Ingrid; Whittemore, Alice S.
Afiliación
  • Gong G; Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Wang W; Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Hsieh CL; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
  • Van Den Berg DJ; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
  • Haiman C; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
  • Oakley-Girvan I; Public Health Institute, Oakland, CA, USA.
  • Whittemore AS; Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA.
Stat Appl Genet Mol Biol ; 18(3)2019 04 08.
Article en En | MEDLINE | ID: mdl-30956231
Genome-wide sequencing enables evaluation of associations between traits and combinations of variants in genes and pathways. But such evaluation requires multi-locus association tests with good power, regardless of the variant and trait characteristics. And since analyzing families may yield more power than analyzing unrelated individuals, we need multi-locus tests applicable to both related and unrelated individuals. Here we describe such tests, and we introduce SKAT-X, a new test statistic that uses genome-wide data obtained from related or unrelated subjects to optimize power for the specific data at hand. Simulations show that: a) SKAT-X performs well regardless of variant and trait characteristics; and b) for binary traits, analyzing affected relatives brings more power than analyzing unrelated individuals, consistent with previous findings for single-locus tests. We illustrate the methods by application to rare unclassified missense variants in the tumor suppressor gene BRCA2, as applied to combined data from prostate cancer families and unrelated prostate cancer cases and controls in the Multi-ethnic Cohort (MEC). The methods can be implemented using open-source code for public use as the R-package GATARS (Genetic Association Tests for Arbitrarily Related Subjects) .
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Pruebas Genéticas / Estudios de Asociación Genética Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Stat Appl Genet Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Pruebas Genéticas / Estudios de Asociación Genética Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Stat Appl Genet Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos