Your browser doesn't support javascript.
loading
The Role of Polarity in Nonplanar Semiconductor Nanostructures.
de la Mata, María; Zamani, Reza R; Martí-Sánchez, Sara; Eickhoff, Martin; Xiong, Qihua; Fontcuberta I Morral, Anna; Caroff, Philippe; Arbiol, Jordi.
Afiliación
  • de la Mata M; Catalan Institute of Nanoscience and Nanotechnology (ICN2) , CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona, Catalonia , Spain.
  • Zamani RR; Interdisciplinary Center for Electron Microscopy, CIME , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland.
  • Martí-Sánchez S; Catalan Institute of Nanoscience and Nanotechnology (ICN2) , CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona, Catalonia , Spain.
  • Eickhoff M; Institute of Solid State Physics , University of Bremen , 28359 Bremen , Germany.
  • Xiong Q; School of Physical and Mathematical Sciences , Nanyang Technological University , 637371 Singapore.
  • Caroff P; Microsoft Quantum Lab Delft, Delft University of Technology , 2600 GA Delft , The Netherlands.
  • Arbiol J; Catalan Institute of Nanoscience and Nanotechnology (ICN2) , CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona, Catalonia , Spain.
Nano Lett ; 19(6): 3396-3408, 2019 06 12.
Article en En | MEDLINE | ID: mdl-31039314
ABSTRACT
The lack of mirror symmetry in binary semiconductor compounds turns them into polar materials, where two opposite orientations of the same crystallographic direction are possible. Interestingly, their physical properties (e.g., electronic or photonic) and morphological features (e.g., shape, growth direction, and so forth) also strongly depend on the polarity. It has been observed that nanoscale materials tend to grow with a specific polarity, which can eventually be reversed for very specific growth conditions. In addition, polar-directed growth affects the defect density and topology and might induce eventually the formation of undesirable polarity inversion domains in the nanostructure, which in turn will affect the photonic and electronic final device performance. Here, we present a review on the polarity-driven growth mechanism at the nanoscale, combining our latest investigation with an overview of the available literature highlighting suitable future possibilities of polarity engineering of semiconductor nanostructures. The present study has been extended over a wide range of semiconductor compounds, covering the most commonly synthesized III-V (GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb) and II-VI (ZnO, ZnTe, CdS, CdSe, CdTe) nanowires and other free-standing nanostructures (tripods, tetrapods, belts, and membranes). This systematic study allowed us to explore the parameters that may induce polarity-dependent and polarity-driven growth mechanisms, as well as the polarity-related consequences on the physical properties of the nanostructures.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: España