scTIM: seeking cell-type-indicative marker from single cell RNA-seq data by consensus optimization.
Bioinformatics
; 36(8): 2474-2485, 2020 04 15.
Article
en En
| MEDLINE
| ID: mdl-31845960
MOTIVATION: Single cell RNA-seq data offers us new resource and resolution to study cell type identity and its conversion. However, data analyses are challenging in dealing with noise, sparsity and poor annotation at single cell resolution. Detecting cell-type-indicative markers is promising to help denoising, clustering and cell type annotation. RESULTS: We developed a new method, scTIM, to reveal cell-type-indicative markers. scTIM is based on a multi-objective optimization framework to simultaneously maximize gene specificity by considering gene-cell relationship, maximize gene's ability to reconstruct cell-cell relationship and minimize gene redundancy by considering gene-gene relationship. Furthermore, consensus optimization is introduced for robust solution. Experimental results on three diverse single cell RNA-seq datasets show scTIM's advantages in identifying cell types (clustering), annotating cell types and reconstructing cell development trajectory. Applying scTIM to the large-scale mouse cell atlas data identifies critical markers for 15 tissues as 'mouse cell marker atlas', which allows us to investigate identities of different tissues and subtle cell types within a tissue. scTIM will serve as a useful method for single cell RNA-seq data mining. AVAILABILITY AND IMPLEMENTATION: scTIM is freely available at https://github.com/Frank-Orwell/scTIM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Análisis de la Célula Individual
/
RNA-Seq
Tipo de estudio:
Guideline
Límite:
Animals
Idioma:
En
Revista:
Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2020
Tipo del documento:
Article
País de afiliación:
China