Your browser doesn't support javascript.
loading
Novel nanomedicine with a chemical-exchange saturation transfer effect for breast cancer treatment in vivo.
Jia, Yanlong; Wang, Chaochao; Zheng, Jiehua; Lin, Guisen; Ni, Dalong; Shen, Zhiwei; Huang, Baoxuan; Li, Yan; Guan, Jitian; Hong, Weida; Chen, Yuanfeng; Wu, Renhua.
Afiliación
  • Jia Y; Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China.
  • Wang C; Shanghai Key Laboratory of Advanced Polymeric Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
  • Zheng J; Department of General Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China.
  • Lin G; Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China.
  • Ni D; Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
  • Shen Z; Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China.
  • Huang B; Shanghai Key Laboratory of Advanced Polymeric Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
  • Li Y; Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China.
  • Guan J; Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China.
  • Hong W; Department of General Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China.
  • Chen Y; Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China.
  • Wu R; Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China. rhwu@stu.edu.cn.
J Nanobiotechnology ; 17(1): 123, 2019 Dec 17.
Article en En | MEDLINE | ID: mdl-31847857
ABSTRACT

BACKGROUND:

Nanomedicine is a promising new approach to cancer treatment that avoids the disadvantages of traditional chemotherapy and improves therapeutic indices. However, the lack of a real-time visualization imaging technology to monitor drug distribution greatly limits its clinical application. Image-tracked drug delivery is of great clinical interest; it is useful for identifying those patients for whom the therapy is more likely to be beneficial. This paper discusses a novel nanomedicine that displays features of nanoparticles and facilitates functional magnetic resonance imaging but is challenging to prepare.

RESULTS:

To achieve this goal, we synthesized an acylamino-containing amphiphilic block copolymer (polyethylene glycol-polyacrylamide-polyacetonitrile, PEG-b-P(AM-co-AN)) by reversible addition-fragmentation chain transfer (RAFT) polymerization. The PEG-b-P(AM-co-AN) has chemical exchange saturation transfer (CEST) effects, which enable the use of CEST imaging for monitoring nanocarrier accumulation and providing molecular information of pathological tissues. Based on PEG-b-P(AM-co-AN), a new nanomedicine PEG-PAM-PAN@DOX was constructed by nano-precipitation. The self-assembling nature of PEG-PAM-PAN@DOX made the synthesis effective, straightforward, and biocompatible. In vitro studies demonstrate decreased cytotoxicity of PEG-PAM-PAN@DOX compared to free doxorubicin (half-maximal inhibitory concentration (IC50), mean ~ 0.62 µg/mL vs. ~ 5 µg/mL), and the nanomedicine more efficiently entered the cytoplasm and nucleus of cancer cells to kill them. Further, in vivo animal experiments showed that the nanomedicine developed was not only effective against breast cancer, but also displayed an excellent sensitive CEST effect for monitoring drug accumulation (at about 0.5 ppm) in tumor areas. The CEST signal of post-injection 2 h was significantly higher than that of pre-injection (2.17 ± 0.88% vs. 0. 09 ± 0.75%, p < 0.01).

CONCLUSIONS:

The nanomedicine with CEST imaging reflects the characterization of tumors and therapeutic functions has great potential medical applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polímeros / Acrilamidas / Neoplasias de la Mama / Doxorrubicina / Nanocápsulas / Antineoplásicos Límite: Animals / Female / Humans Idioma: En Revista: J Nanobiotechnology Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polímeros / Acrilamidas / Neoplasias de la Mama / Doxorrubicina / Nanocápsulas / Antineoplásicos Límite: Animals / Female / Humans Idioma: En Revista: J Nanobiotechnology Año: 2019 Tipo del documento: Article