Your browser doesn't support javascript.
loading
Accurate detection of mosaic variants in sequencing data without matched controls.
Dou, Yanmei; Kwon, Minseok; Rodin, Rachel E; Cortés-Ciriano, Isidro; Doan, Ryan; Luquette, Lovelace J; Galor, Alon; Bohrson, Craig; Walsh, Christopher A; Park, Peter J.
Afiliación
  • Dou Y; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Kwon M; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Rodin RE; Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
  • Cortés-Ciriano I; Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.
  • Doan R; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Luquette LJ; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA.
  • Galor A; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Bohrson C; European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK.
  • Walsh CA; Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
  • Park PJ; Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.
Nat Biotechnol ; 38(3): 314-319, 2020 03.
Article en En | MEDLINE | ID: mdl-31907404
Detection of mosaic mutations that arise in normal development is challenging, as such mutations are typically present in only a minute fraction of cells and there is no clear matched control for removing germline variants and systematic artifacts. We present MosaicForecast, a machine-learning method that leverages read-based phasing and read-level features to accurately detect mosaic single-nucleotide variants and indels, achieving a multifold increase in specificity compared with existing algorithms. Using single-cell sequencing and targeted sequencing, we validated 80-90% of the mosaic single-nucleotide variants and 60-80% of indels detected in human brain whole-genome sequencing data. Our method should help elucidate the contribution of mosaic somatic mutations to the origin and development of disease.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polimorfismo de Nucleótido Simple / Mutación INDEL / Análisis de la Célula Individual / Secuenciación Completa del Genoma Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polimorfismo de Nucleótido Simple / Mutación INDEL / Análisis de la Célula Individual / Secuenciación Completa del Genoma Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos