Accurate detection of mosaic variants in sequencing data without matched controls.
Nat Biotechnol
; 38(3): 314-319, 2020 03.
Article
en En
| MEDLINE
| ID: mdl-31907404
Detection of mosaic mutations that arise in normal development is challenging, as such mutations are typically present in only a minute fraction of cells and there is no clear matched control for removing germline variants and systematic artifacts. We present MosaicForecast, a machine-learning method that leverages read-based phasing and read-level features to accurately detect mosaic single-nucleotide variants and indels, achieving a multifold increase in specificity compared with existing algorithms. Using single-cell sequencing and targeted sequencing, we validated 80-90% of the mosaic single-nucleotide variants and 60-80% of indels detected in human brain whole-genome sequencing data. Our method should help elucidate the contribution of mosaic somatic mutations to the origin and development of disease.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Polimorfismo de Nucleótido Simple
/
Mutación INDEL
/
Análisis de la Célula Individual
/
Secuenciación Completa del Genoma
Tipo de estudio:
Diagnostic_studies
Límite:
Humans
Idioma:
En
Revista:
Nat Biotechnol
Asunto de la revista:
BIOTECNOLOGIA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Estados Unidos