Lead Optimization of Dehydroemetine for Repositioned Use in Malaria.
Antimicrob Agents Chemother
; 64(4)2020 03 24.
Article
en En
| MEDLINE
| ID: mdl-31964796
Drug repositioning offers an effective alternative to de novo drug design to tackle the urgent need for novel antimalarial treatments. The antiamoebic compound emetine dihydrochloride has been identified as a potent in vitro inhibitor of the multidrug-resistant strain K1 of Plasmodium falciparum (50% inhibitory concentration [IC50], 47 nM ± 2.1 nM [mean ± standard deviation]). Dehydroemetine, a synthetic analogue of emetine dihydrochloride, has been reported to have less-cardiotoxic effects than emetine. The structures of two diastereomers of dehydroemetine were modeled on the published emetine binding site on the cryo-electron microscopy (cryo-EM) structure with PDB code 3J7A (P. falciparum 80S ribosome in complex with emetine), and it was found that (-)-R,S-dehydroemetine mimicked the bound pose of emetine more closely than did (-)-S,S-dehydroisoemetine. (-)-R,S-dehydroemetine (IC50 71.03 ± 6.1 nM) was also found to be highly potent against the multidrug-resistant K1 strain of P. falciparum compared with (-)-S,S-dehydroisoemetine (IC50, 2.07 ± 0.26 µM), which loses its potency due to the change of configuration at C-1'. In addition to its effect on the asexual erythrocytic stages of P. falciparum, the compound exhibited gametocidal properties with no cross-resistance against any of the multidrug-resistant strains tested. Drug interaction studies showed (-)-R,S-dehydroemetine to have synergistic antimalarial activity with atovaquone and proguanil. Emetine dihydrochloride and (-)-R,S-dehydroemetine failed to show any inhibition of the hERG potassium channel and displayed activity affecting the mitochondrial membrane potential, indicating a possible multimodal mechanism of action.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Plasmodium falciparum
/
Malaria Falciparum
/
Emetina
/
Reposicionamiento de Medicamentos
/
Antimaláricos
Límite:
Female
/
Humans
/
Male
Idioma:
En
Revista:
Antimicrob Agents Chemother
Año:
2020
Tipo del documento:
Article
País de afiliación:
Reino Unido