Your browser doesn't support javascript.
loading
Gene knockout of the Na+-glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion.
Nespoux, Josselin; Patel, Rohit; Zhang, Haiyan; Huang, Winnie; Freeman, Brent; Sanders, Paul W; Kim, Young Chul; Vallon, Volker.
Afiliación
  • Nespoux J; Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California.
  • Patel R; Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California.
  • Zhang H; Department of Pathology, University of California, San Diego, California.
  • Huang W; Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California.
  • Freeman B; Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California.
  • Sanders PW; Departments of Medicine, Cell, and Developmental and Integrative Biology, University of Alabama at Birmingham, and Department of Veterans Affairs Medical Center, Birmingham, Alabama.
  • Kim YC; Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California.
  • Vallon V; Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California.
Am J Physiol Renal Physiol ; 318(5): F1100-F1112, 2020 05 01.
Article en En | MEDLINE | ID: mdl-32116018
ABSTRACT
In the early proximal tubule, Na+-glucose cotransporter 2 (SGLT2) mediates the bulk of renal glucose reabsorption. Gene deletion in mice (Sglt2-/-) was used to determine the role of SGLT2 in acute kidney injury induced by bilateral ischemia-reperfusion (IR). In Sglt2-/- and littermate wild-type mice, plasma creatinine increased similarly on day 1 after IR. This was associated with an equal increase in both genotypes in the urinary kidney injury molecule-1-to-creatinine ratio, a tubular injury marker, and similarly reduced urine osmolality and increased plasma osmolality, indicating impaired urine concentration. In both IR groups, FITC-sinistrin glomerular filtration rate was equally reduced on day 14, and plasma creatinine was similarly and incompletely restored on day 23. In Sglt2-/- mice subjected to IR, fractional urinary glucose excretion was increased on day 1 but reduced and associated with normal renal Na+-glucose cotransporter 1 (Sglt1) mRNA expression on day 23, suggesting temporary SGLT1 suppression. In wild-type mice subjected to IR, renal Sglt1 mRNA was likewise normal on day 23, whereas Sglt2 mRNA was reduced by 57%. In both genotypes, IR equally reduced urine osmolality and renal mRNA expression of the Na+-K+-2Cl- cotransporter and renin on day 23, suggesting thick ascending limb dysfunction, and similarly increased renal mRNA expression of markers of injury, inflammation, oxidative stress, and fibrosis (kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, transforming growth factor-ß1, NADPH oxidase-2, and collagen type 1). This was associated with equal increases in kidney histological damage scores and similar degree of capillary loss in both genotypes. The data indicate that genetic deletion of SGLT2 did not protect the kidneys in the initial injury phase or the subsequent recovery phase in a mouse model of IR-induced acute kidney injury.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Glucemia / Daño por Reperfusión / Transportador 2 de Sodio-Glucosa / Lesión Renal Aguda / Riñón Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Am J Physiol Renal Physiol Asunto de la revista: FISIOLOGIA / NEFROLOGIA Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Glucemia / Daño por Reperfusión / Transportador 2 de Sodio-Glucosa / Lesión Renal Aguda / Riñón Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Am J Physiol Renal Physiol Asunto de la revista: FISIOLOGIA / NEFROLOGIA Año: 2020 Tipo del documento: Article