Your browser doesn't support javascript.
loading
Genetic Screen for Cell Fitness in High or Low Oxygen Highlights Mitochondrial and Lipid Metabolism.
Jain, Isha H; Calvo, Sarah E; Markhard, Andrew L; Skinner, Owen S; To, Tsz-Leung; Ast, Tslil; Mootha, Vamsi K.
Afiliación
  • Jain IH; Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute, Cambridge, MA 02142, USA.
  • Calvo SE; Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute, Cambridge, MA 02142, USA.
  • Markhard AL; Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute, Cambridge, MA 02142, USA.
  • Skinner OS; Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute, Cambridge, MA 02142, USA.
  • To TL; Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute, Cambridge, MA 02142, USA.
  • Ast T; Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute, Cambridge, MA 02142, USA.
  • Mootha VK; Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute, Cambridge, MA 02142, USA. Electronic address: vamsi@hms.harvard.edu.
Cell ; 181(3): 716-727.e11, 2020 04 30.
Article en En | MEDLINE | ID: mdl-32259488
ABSTRACT
Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS. Knockouts of many mitochondrial pathways thought to be essential, including complex I and enzymes in Fe-S biosynthesis, grow relatively well at low oxygen and thus are buffered by hypoxia. In contrast, in certain cell types, knockout of lipid biosynthetic and peroxisomal genes causes fitness defects only in low oxygen. Our resource nominates genetic diseases whose severity may be modulated by oxygen and links hundreds of genes to oxygen homeostasis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxígeno / Metabolismo de los Lípidos / Transcriptoma / Mitocondrias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Cell Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxígeno / Metabolismo de los Lípidos / Transcriptoma / Mitocondrias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Cell Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos