Characterization of Signaling Pathways Associated with Pancreatic ß-cell Adaptive Flexibility in Compensation of Obesity-linked Diabetes in db/db Mice.
Mol Cell Proteomics
; 19(6): 971-993, 2020 06.
Article
en En
| MEDLINE
| ID: mdl-32265294
The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic ß-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, ß-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic ß-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, ß-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the ß-cell's adaptive flexibility and indicates that therapeutic approaches applied to encourage ß-cell rest are capable of restoring endogenous ß-cell function. However, mechanisms that regulate ß-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying ß-cell adaptive flexibility in db/db ß-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with ß-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking-core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of ß-cell function, providing improved insight into disease pathogenesis of T2D.
Palabras clave
Diabetes; beta-granule biogenesis; glycoprotein pathways; glycoproteomics; insulin resistance; insulin secretory pathway; obesity; phosphoproteome; proinsulin biosynthesis; protein degradation; protein folding; protein synthesis; protein-protein interactions; signal transduction; unfolded protein response
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Proinsulina
/
Proteoma
/
Diabetes Mellitus Tipo 2
/
Células Secretoras de Insulina
/
Hiperglucemia
/
Insulina
/
Obesidad
Tipo de estudio:
Risk_factors_studies
Límite:
Animals
Idioma:
En
Revista:
Mol Cell Proteomics
Asunto de la revista:
BIOLOGIA MOLECULAR
/
BIOQUIMICA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Dinamarca