How the Local Environment of Functional Sites Regulates Protein Function.
J Am Chem Soc
; 142(22): 9861-9871, 2020 06 03.
Article
en En
| MEDLINE
| ID: mdl-32407086
Proteins form complex biological machineries whose functions in the cell are highly regulated at both the cellular and molecular levels. Cellular regulation of protein functions involves differential gene expressions, post-translation modifications, and signaling cascades. Molecular regulation, on the other hand, involves tuning an optimal local protein environment for the functional site. Precisely how a protein achieves such an optimal environment around a given functional site is not well understood. Herein, by surveying the literature, we first summarize the various reported strategies used by certain proteins to ensure their correct functioning. We then formulate three key physicochemical factors for regulating a protein's functional site, namely, (i) its immediate interactions, (ii) its solvent accessibility, and (iii) its conformational flexibility. We illustrate how these factors are applied to regulate the functions of free/metal-bound Cys and Zn sites in proteins.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Proteínas
Límite:
Humans
Idioma:
En
Revista:
J Am Chem Soc
Año:
2020
Tipo del documento:
Article
País de afiliación:
Taiwán