Photothermal-Responsive Microporous Nanosheets Confined Ionic Liquid for Efficient CO2 Separation.
Small
; 16(34): e2002699, 2020 Aug.
Article
en En
| MEDLINE
| ID: mdl-32700376
2D materials hold promising potential for novel gas separation. However, a lack of in-plane pores and the randomly stacked interplane channels of these membranes still hinder their separation performance. In this work, ferrocene based-MOFs (Zr-Fc MOF) nanosheets, which contain abundant of in-plane micropores, are synthesized as porous supports to fabricate Zr-Fc MOF supported ionic liquid membrane (Zr-Fc-SILM) for highly efficient CO2 separation. The micropores of Zr-Fc MOF nanosheets not only provide extra paths for CO2 transportation, and thus increase its permeance up to 145.15 GPU, but also endow the Zr-Fc-SILM with high selectivity (216.9) of CO2 /N2 through the nanoconfinement effect, which is almost ten times higher than common porous polymer SILM. Furthermore, based on the photothermal-responsive properties of Zr-Fc MOF, the performance is further enhanced (35%) by light irradiation through a photothermal heating process. This provides a brand new way to design light facilitating gas separation membranes.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2020
Tipo del documento:
Article