Your browser doesn't support javascript.
loading
Leveraging phenotypic variability to identify genetic interactions in human phenotypes.
Marderstein, Andrew R; Davenport, Emily R; Kulm, Scott; Van Hout, Cristopher V; Elemento, Olivier; Clark, Andrew G.
Afiliación
  • Marderstein AR; Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York,
  • Davenport ER; Department of Biology, Huck Institutes of the Life Sciences, Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA.
  • Kulm S; Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
  • Van Hout CV; Regeneron Genetics Center, Tarrytown, NY 10591, USA.
  • Elemento O; Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA. Electronic address: ole2001@med.cornell.edu.
  • Clark AG; Department of Computational Biology, Cornell University, Ithaca, NY 14850, USA. Electronic address: ac347@cornell.edu.
Am J Hum Genet ; 108(1): 49-67, 2021 01 07.
Article en En | MEDLINE | ID: mdl-33326753
Although thousands of loci have been associated with human phenotypes, the role of gene-environment (GxE) interactions in determining individual risk of human diseases remains unclear. This is partly because of the severe erosion of statistical power resulting from the massive number of statistical tests required to detect such interactions. Here, we focus on improving the power of GxE tests by developing a statistical framework for assessing quantitative trait loci (QTLs) associated with the trait means and/or trait variances. When applying this framework to body mass index (BMI), we find that GxE discovery and replication rates are significantly higher when prioritizing genetic variants associated with the variance of the phenotype (vQTLs) compared to when assessing all genetic variants. Moreover, we find that vQTLs are enriched for associations with other non-BMI phenotypes having strong environmental influences, such as diabetes or ulcerative colitis. We show that GxE effects first identified in quantitative traits such as BMI can be used for GxE discovery in disease phenotypes such as diabetes. A clear conclusion is that strong GxE interactions mediate the genetic contribution to body weight and diabetes risk.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estudio de Asociación del Genoma Completo / Variación Biológica Poblacional Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Am J Hum Genet Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estudio de Asociación del Genoma Completo / Variación Biológica Poblacional Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Am J Hum Genet Año: 2021 Tipo del documento: Article