Your browser doesn't support javascript.
loading
Robust autocalibrated structured low-rank EPI ghost correction.
Lobos, Rodrigo A; Hoge, W Scott; Javed, Ahsan; Liao, Congyu; Setsompop, Kawin; Nayak, Krishna S; Haldar, Justin P.
Afiliación
  • Lobos RA; Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.
  • Hoge WS; Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA.
  • Javed A; Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA.
  • Liao C; Department of Radiology, Harvard Medical School, Boston, MA, USA.
  • Setsompop K; Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.
  • Nayak KS; Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA.
  • Haldar JP; Department of Radiology, Harvard Medical School, Boston, MA, USA.
Magn Reson Med ; 85(6): 3403-3419, 2021 06.
Article en En | MEDLINE | ID: mdl-33332652
PURPOSE: We propose and evaluate a new structured low-rank method for echo-planar imaging (EPI) ghost correction called Robust Autocalibrated LORAKS (RAC-LORAKS). The method can be used to suppress EPI ghosts arising from the differences between different readout gradient polarities and/or the differences between different shots. It does not require conventional EPI navigator signals, and is robust to imperfect autocalibration data. METHODS: Autocalibrated LORAKS is a previous structured low-rank method for EPI ghost correction that uses GRAPPA-type autocalibration data to enable high-quality ghost correction. This method works well when the autocalibration data are pristine, but performance degrades substantially when the autocalibration information is imperfect. RAC-LORAKS generalizes Autocalibrated LORAKS in two ways. First, it does not completely trust the information from autocalibration data, and instead considers the autocalibration and EPI data simultaneously when estimating low-rank matrix structure. Second, it uses complementary information from the autocalibration data to improve EPI reconstruction in a multi-contrast joint reconstruction framework. RAC-LORAKS is evaluated using simulations and in vivo data, including comparisons to state-of-the-art methods. RESULTS: RAC-LORAKS is demonstrated to have good ghost elimination performance compared to state-of-the-art methods in several complicated EPI acquisition scenarios (including gradient-echo brain imaging, diffusion-encoded brain imaging, and cardiac imaging). CONCLUSIONS: RAC-LORAKS provides effective suppression of EPI ghosts and is robust to imperfect autocalibration data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagen Eco-Planar Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagen Eco-Planar Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos