Robust autocalibrated structured low-rank EPI ghost correction.
Magn Reson Med
; 85(6): 3403-3419, 2021 06.
Article
en En
| MEDLINE
| ID: mdl-33332652
PURPOSE: We propose and evaluate a new structured low-rank method for echo-planar imaging (EPI) ghost correction called Robust Autocalibrated LORAKS (RAC-LORAKS). The method can be used to suppress EPI ghosts arising from the differences between different readout gradient polarities and/or the differences between different shots. It does not require conventional EPI navigator signals, and is robust to imperfect autocalibration data. METHODS: Autocalibrated LORAKS is a previous structured low-rank method for EPI ghost correction that uses GRAPPA-type autocalibration data to enable high-quality ghost correction. This method works well when the autocalibration data are pristine, but performance degrades substantially when the autocalibration information is imperfect. RAC-LORAKS generalizes Autocalibrated LORAKS in two ways. First, it does not completely trust the information from autocalibration data, and instead considers the autocalibration and EPI data simultaneously when estimating low-rank matrix structure. Second, it uses complementary information from the autocalibration data to improve EPI reconstruction in a multi-contrast joint reconstruction framework. RAC-LORAKS is evaluated using simulations and in vivo data, including comparisons to state-of-the-art methods. RESULTS: RAC-LORAKS is demonstrated to have good ghost elimination performance compared to state-of-the-art methods in several complicated EPI acquisition scenarios (including gradient-echo brain imaging, diffusion-encoded brain imaging, and cardiac imaging). CONCLUSIONS: RAC-LORAKS provides effective suppression of EPI ghosts and is robust to imperfect autocalibration data.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Procesamiento de Imagen Asistido por Computador
/
Imagen Eco-Planar
Idioma:
En
Revista:
Magn Reson Med
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
Año:
2021
Tipo del documento:
Article
País de afiliación:
Estados Unidos