Your browser doesn't support javascript.
loading
Characteristics of Chemical Speciation in PM1 in Six Representative Regions in China.
Bai, Kaixu; Wu, Can; Li, Jianjun; Li, Ke; Guo, Jianping; Wang, Gehui.
Afiliación
  • Bai K; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241 China.
  • Wu C; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai, 202162 China.
  • Li J; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241 China.
  • Li K; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710079 China.
  • Guo J; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241 China.
  • Wang G; State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081 China.
Adv Atmos Sci ; 38(7): 1101-1114, 2021.
Article en En | MEDLINE | ID: mdl-33840873
ABSTRACT
A better knowledge of aerosol properties is of great significance for elucidating the complex mechanisms behind frequently occurring haze pollution events. In this study, we examine the temporal and spatial variations in both PM1 and its major chemical constituents using three-year field measurements that were collected in six representative regions in China between 2012 and 2014. Our results show that both PM1 and its chemical compositions varied significantly in space and time, with high PM1 loadings mainly observed in the winter. By comparing chemical constituents between clean and polluted episodes, we find that the elevated PM1 mass concentration during pollution events should be largely attributable to significant increases in organic matter (OM) and inorganic aerosols like sulfate, nitrate, and ammonium (SNA), indicative of the critical role of primary emissions and secondary aerosols in elevating PM1 pollution levels. The ratios of PM1/PM2.5 are found to be generally high in Shanghai and Guangzhou, while relatively low ratios are seen in Xi'an and Chengdu, indicating anthropogenic emissions were more likely to accumulate in forms of finer particles. With respect to the relative importance of chemical components and meteorological factors quantified via statistical modeling practices, we find that primary emissions and secondary aerosols were the two leading factors contributing to PM1 variations, though meteorological factors also played important roles in regulating the dispersion of atmospheric PM.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Atmos Sci Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Atmos Sci Año: 2021 Tipo del documento: Article