Your browser doesn't support javascript.
loading
Genome-Wide Investigation of the NF-X1 Gene Family in Populus trichocarpa Expression Profiles during Development and Stress.
He, Fang; Shi, Yu-Jie; Mi, Jia-Xuan; Zhao, Kuang-Ji; Cui, Xing-Lei; Chen, Liang-Hua; Yang, Han-Bo; Zhang, Fan; Zhao, Qian; Huang, Jin-Liang; Wan, Xue-Qin.
Afiliación
  • He F; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Shi YJ; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Mi JX; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Zhao KJ; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Cui XL; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Chen LH; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Yang HB; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Zhang F; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Zhao Q; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Huang JL; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Wan XQ; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article en En | MEDLINE | ID: mdl-33925110
ABSTRACT
Poplar are planted extensively in reforestation and afforestation. However, their successful establishment largely depends on the environmental conditions of the newly established plantation and their resistance to abiotic as well as biotic stresses. NF-X1, a widespread transcription factor in plants, plays an irreplaceable role in plant growth, development, and stress tolerance. Although the whole genome sequence of Populus trichocarpa has been published for a long time, little is known about the NF-X1 genes in poplar, especially those related to drought stress, mechanical damage, insect feeding, and hormone response at the whole genome level. In this study, whole genome analysis of the poplar NF-X1 family was performed, and 4 PtrNF-X1 genes were identified. Then, bioinformatics analysis and qRT-PCR were applied to analyze the gene structure, phylogeny, chromosomal localization, gene replication, Cis-elements, and expression patterns of PtrNF-X1genes. Sequence analysis revealed that one-quarter of the PtrNF-X1 genes did not contain introns. Phylogenetic analysis revealed that all NF-X1 genes were split into three subfamilies. The number of two pairs of segmented replication genes were detected in poplars. Cis-acting element analysis identified a large number of elements of growth and development and stress-related elements on the promoters of different NF-X1 members. In addition, some PtrNF-X1 could be significantly induced by polyethylene glycol (PEG) and abscisic acid (ABA), thus revealing their potential role in regulating stress response. Comprehensive analysis is helpful in selecting candidate NF-X1 genes for the follow-up study of the biological function, and molecular genetic progress of stress resistance in forest trees provides genetic resources.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas de Plantas / Factores de Transcripción / Genes de Plantas / Populus Tipo de estudio: Observational_studies / Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas de Plantas / Factores de Transcripción / Genes de Plantas / Populus Tipo de estudio: Observational_studies / Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: China