Your browser doesn't support javascript.
loading
Fast Monte Carlo codes for occupational dosimetry in interventional radiology.
García Balcaza, V; Camp, A; Badal, A; Andersson, M; Almen, A; Ginjaume, M; Duch, M A.
Afiliación
  • García Balcaza V; Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain. Electronic address: victor.garcia.balcaza@upc.edu.
  • Camp A; Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain.
  • Badal A; Division of Imaging, Diagnostics, and Software Reliability, OSEL, CDRH, U.S. Food and Drug Administration Silver Spring, Maryland, United States.
  • Andersson M; Medical Radiation Physics, Department of Translational Medicine (ITM), Lund University, SE-205 02, Malmö, Sweden.
  • Almen A; Medical Radiation Physics, Department of Translational Medicine (ITM), Lund University, SE-205 02, Malmö, Sweden.
  • Ginjaume M; Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain.
  • Duch MA; Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain.
Phys Med ; 85: 166-174, 2021 May.
Article en En | MEDLINE | ID: mdl-34015619
ABSTRACT

PURPOSE:

Interventional radiology techniques cause radiation exposure both to patient and personnel. The radiation dose to the operator is usually measured with dosimeters located at specific points above or below the lead aprons. The aim of this study is to develop and validate two fast Monte Carlo (MC) codes for radiation transport in order to improve the assessment of individual doses in interventional radiology. The proposed methodology reduces the number of required dosemeters and provides immediate dose results.

METHODS:

Two fast MC simulation codes, PENELOPE/penEasyIR and MCGPU-IR, have been developed. Both codes have been validated by comparing fast MC calculations with the multipurpose PENELOPE MC code and with measurements during a realistic interventional procedure.

RESULTS:

The new codes were tested with a computation time of about 120 s to estimate operator doses while a standard simulation needs several days to obtain similar uncertainties. When compared with the standard calculation in simple set-ups, MCGPU-IR tends to underestimate doses (up to 5%), while PENELOPE/penEasyIR overestimates them (up to 18%). When comparing both fast MC codes with experimental values in realistic set-ups, differences are within 25%. These differences are within accepted uncertainties in individual monitoring.

CONCLUSION:

The study highlights the fact that computational dosimetry based on the use of fast MC codes can provide good estimates of the personal dose equivalent and overcome some of the limitations of occupational monitoring in interventional radiology. Notably, MCGPU-IR calculates both organ doses and effective dose, providing a better estimate of radiation risk.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Radiometría / Radiología Intervencionista Tipo de estudio: Health_economic_evaluation Límite: Humans Idioma: En Revista: Phys Med Asunto de la revista: BIOFISICA / BIOLOGIA / MEDICINA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Radiometría / Radiología Intervencionista Tipo de estudio: Health_economic_evaluation Límite: Humans Idioma: En Revista: Phys Med Asunto de la revista: BIOFISICA / BIOLOGIA / MEDICINA Año: 2021 Tipo del documento: Article