Your browser doesn't support javascript.
loading
An effective feature extraction method based on GDS for atrial fibrillation detection.
Wang, Haiyan; Dai, Honghua; Zhou, Yanjie; Zhou, Bing; Lu, Peng; Zhang, Hongpo; Wang, Zongmin.
Afiliación
  • Wang H; State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450003, China; Simulation Experiment Centre, Zhengzhou University of Aeronautics, Zhengzhou 450046, China; Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China.
  • Dai H; Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China; Institute of Intelligent Systems, Deakin University, Burwood, VIC 3125, Australia.
  • Zhou Y; School of Management Engineering, Zhengzhou University, Zhengzhou 450001, China. Electronic address: ieyjzhou@zzu.edu.cn.
  • Zhou B; Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China; School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China.
  • Lu P; Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.
  • Zhang H; State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450003, China; Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China.
  • Wang Z; State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450003, China; Collaborative Innovation Centre for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China.
J Biomed Inform ; 119: 103819, 2021 07.
Article en En | MEDLINE | ID: mdl-34029749
Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are mostly based on complex signal transformation or precise waveform localization. This is a big challenge for complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then calculates the statistical distribution feature and the information quantity feature of the GDS as the input of the classifier. Experiments on four databases include 146 subjects show that the feature extraction method for detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, it is a good choice for feature extraction in AF detection.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fibrilación Atrial Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: J Biomed Inform Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fibrilación Atrial Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: J Biomed Inform Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China