Your browser doesn't support javascript.
loading
Practical segmentation of nuclei in brightfield cell images with neural networks trained on fluorescently labelled samples.
Fishman, Dmytro; Salumaa, Sten-Oliver; Majoral, Daniel; Laasfeld, Tõnis; Peel, Samantha; Wildenhain, Jan; Schreiner, Alexander; Palo, Kaupo; Parts, Leopold.
Afiliación
  • Fishman D; Department of Computer Science, University of Tartu, Narva Str 20, Tartu, 51009, Estonia.
  • Salumaa SO; Department of Computer Science, University of Tartu, Narva Str 20, Tartu, 51009, Estonia.
  • Majoral D; Department of Computer Science, University of Tartu, Narva Str 20, Tartu, 51009, Estonia.
  • Laasfeld T; Department of Computer Science, University of Tartu, Narva Str 20, Tartu, 51009, Estonia.
  • Peel S; Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Ravila, Estonia.
  • Wildenhain J; Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
  • Schreiner A; Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
  • Palo K; PerkinElmer Cellular Technologies, Germany GmbH, Hamburg, Germany.
  • Parts L; PerkinElmer Cellular Technologies, Germany GmbH, Hamburg, Germany.
J Microsc ; 284(1): 12-24, 2021 10.
Article en En | MEDLINE | ID: mdl-34081320
ABSTRACT
Identifying nuclei is a standard first step when analysing cells in microscopy images. The traditional approach relies on signal from a DNA stain, or fluorescent transgene expression localised to the nucleus. However, imaging techniques that do not use fluorescence can also carry useful information. Here, we used brightfield and fluorescence images of fixed cells with fluorescently labelled DNA, and confirmed that three convolutional neural network architectures can be adapted to segment nuclei from the brightfield channel, relying on fluorescence signal to extract the ground truth for training. We found that U-Net achieved the best overall performance, Mask R-CNN provided an additional benefit of instance segmentation, and that DeepCell proved too slow for practical application. We trained the U-Net architecture on over 200 dataset variations, established that accurate segmentation is possible using as few as 16 training images, and that models trained on images from similar cell lines can extrapolate well. Acquiring data from multiple focal planes further helps distinguish nuclei in the samples. Overall, our work helps to liberate a fluorescence channel reserved for nuclear staining, thus providing more information from the specimen, and reducing reagents and time required for preparing imaging experiments.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Redes Neurales de la Computación Idioma: En Revista: J Microsc Año: 2021 Tipo del documento: Article País de afiliación: Estonia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Redes Neurales de la Computación Idioma: En Revista: J Microsc Año: 2021 Tipo del documento: Article País de afiliación: Estonia