Your browser doesn't support javascript.
loading
Engineering Insulin Cold Chain Resilience to Improve Global Access.
Maikawa, Caitlin L; Mann, Joseph L; Kannan, Aadithya; Meis, Catherine M; Grosskopf, Abigail K; Ou, Ben S; Autzen, Anton A A; Fuller, Gerald G; Maahs, David M; Appel, Eric A.
Afiliación
  • Maikawa CL; Department of Bioengineering, Stanford University, Stanford California 94305, United States.
  • Mann JL; Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States.
  • Kannan A; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
  • Meis CM; Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States.
  • Grosskopf AK; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
  • Ou BS; Department of Bioengineering, Stanford University, Stanford California 94305, United States.
  • Autzen AAA; Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States.
  • Fuller GG; Department of Science and Technology, Aarhus University, Aarhus 8000, Denmark.
  • Maahs DM; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
  • Appel EA; Department of Pediatrics (Endocrinology), Stanford University, Stanford, California 94305, United States.
Biomacromolecules ; 22(8): 3386-3395, 2021 08 09.
Article en En | MEDLINE | ID: mdl-34213889
There are 150 million people with diabetes worldwide who require insulin replacement therapy, and the prevalence of diabetes is rising the fastest in middle- and low-income countries. The current formulations require costly refrigerated transport and storage to prevent loss of insulin integrity. This study shows the development of simple "drop-in" amphiphilic copolymer excipients to maintain formulation integrity, bioactivity, pharmacokinetics, and pharmacodynamics for over 6 months when subjected to severe stressed aging conditions that cause current commercial formulation to fail in under 2 weeks. Further, when these copolymers are added to Humulin R (Eli Lilly) in original commercial packaging, they prevent insulin aggregation for up to 4 days at 50 °C compared to less than 1 day for Humulin R alone. These copolymers demonstrate promise as simple formulation additives to increase the cold chain resilience of commercial insulin formulations, thereby expanding global access to these critical drugs for treatment of diabetes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diabetes Mellitus / Insulina Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diabetes Mellitus / Insulina Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos