Your browser doesn't support javascript.
loading
Neoantigen vaccination induces clinical and immunologic responses in non-small cell lung cancer patients harboring EGFR mutations.
Li, Fenge; Deng, Ligang; Jackson, Kyle R; Talukder, Amjad H; Katailiha, Arjun S; Bradley, Sherille D; Zou, Qingwei; Chen, Caixia; Huo, Chong; Chiu, Yulun; Stair, Matthew; Feng, Weihong; Bagaev, Aleksander; Kotlov, Nikita; Svekolkin, Viktor; Ataullakhanov, Ravshan; Miheecheva, Natalia; Frenkel, Felix; Wang, Yaling; Zhang, Minying; Hawke, David; Han, Ling; Zhou, Shuo; Zhang, Yan; Wang, Zhenglu; Decker, William K; Sonnemann, Heather M; Roszik, Jason; Forget, Marie-Andree; Davies, Michael A; Bernatchez, Chantale; Yee, Cassian; Bassett, Roland; Hwu, Patrick; Du, Xueming; Lizee, Gregory.
Afiliación
  • Li F; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Deng L; Tianjin HengJia Biotechnology Development Co Ltd, Tianjin, China.
  • Jackson KR; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Talukder AH; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Katailiha AS; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Bradley SD; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Zou Q; Tianjin HengJia Biotechnology Development Co Ltd, Tianjin, China.
  • Chen C; Tianjin HengJia Biotechnology Development Co Ltd, Tianjin, China.
  • Huo C; Tianjin HengJia Biotechnology Development Co Ltd, Tianjin, China.
  • Chiu Y; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Stair M; Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, USA.
  • Feng W; Department of Oncology, Tianjin Beichen Hospital, Tianjin, China.
  • Bagaev A; BostonGene Corporation, Waltham, Massachusetts, USA.
  • Kotlov N; BostonGene Corporation, Waltham, Massachusetts, USA.
  • Svekolkin V; BostonGene Corporation, Waltham, Massachusetts, USA.
  • Ataullakhanov R; BostonGene Corporation, Waltham, Massachusetts, USA.
  • Miheecheva N; BostonGene Corporation, Waltham, Massachusetts, USA.
  • Frenkel F; BostonGene Corporation, Waltham, Massachusetts, USA.
  • Wang Y; Tianjin HengJia Biotechnology Development Co Ltd, Tianjin, China.
  • Zhang M; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Hawke D; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Han L; Department of Oncology, Tianjin Beichen Hospital, Tianjin, China.
  • Zhou S; Provincial Clinical College, Fujian Medical University, Fujian, China.
  • Zhang Y; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
  • Wang Z; Biological Sample Resource Sharing Center, Tianjin First Central Hospital, Tianjin, China.
  • Decker WK; Department of Immunology, Baylor College of Medicine, Houston, Texas, USA.
  • Sonnemann HM; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Roszik J; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Forget MA; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Davies MA; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Bernatchez C; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Yee C; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Bassett R; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Hwu P; Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
  • Du X; Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Lizee G; Department of Oncology, Tianjin Beichen Hospital, Tianjin, China glizee@mdanderson.org dudaming73@163.com.
J Immunother Cancer ; 9(7)2021 07.
Article en En | MEDLINE | ID: mdl-34244308
BACKGROUND: Neoantigen (NeoAg) peptides displayed at the tumor cell surface by human leukocyte antigen molecules show exquisite tumor specificity and can elicit T cell mediated tumor rejection. However, few NeoAgs are predicted to be shared between patients, and none to date have demonstrated therapeutic value in the context of vaccination. METHODS: We report here a phase I trial of personalized NeoAg peptide vaccination (PPV) of 24 stage III/IV non-small cell lung cancer (NSCLC) patients who had previously progressed following multiple conventional therapies, including surgery, radiation, chemotherapy, and tyrosine kinase inhibitors (TKIs). Primary endpoints of the trial evaluated feasibility, tolerability, and safety of the personalized vaccination approach, and secondary trial endpoints assessed tumor-specific immune reactivity and clinical responses. Of the 16 patients with epidermal growth factor receptor (EGFR) mutations, nine continued TKI therapy concurrent with PPV and seven patients received PPV alone. RESULTS: Out of 29 patients enrolled in the trial, 24 were immunized with personalized NeoAg peptides. Aside from transient rash, fatigue and/or fever observed in three patients, no other treatment-related adverse events were observed. Median progression-free survival and overall survival of the 24 vaccinated patients were 6.0 and 8.9 months, respectively. Within 3-4 months following initiation of PPV, seven RECIST-based objective clinical responses including one complete response were observed. Notably, all seven clinical responders had EGFR-mutated tumors, including four patients that had continued TKI therapy concurrently with PPV. Immune monitoring showed that five of the seven responding patients demonstrated vaccine-induced T cell responses against EGFR NeoAg peptides. Furthermore, two highly shared EGFR mutations (L858R and T790M) were shown to be immunogenic in four of the responding patients, all of whom demonstrated increases in peripheral blood neoantigen-specific CD8+ T cell frequencies during the course of PPV. CONCLUSIONS: These results show that personalized NeoAg vaccination is feasible and safe for advanced-stage NSCLC patients. The clinical and immune responses observed following PPV suggest that EGFR mutations constitute shared, immunogenic neoantigens with promising immunotherapeutic potential for large subsets of NSCLC patients. Furthermore, PPV with concurrent EGFR inhibitor therapy was well tolerated and may have contributed to the induction of PPV-induced T cell responses.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Vacunas contra el Cáncer / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Límite: Aged / Aged80 / Humans / Male / Middle aged Idioma: En Revista: J Immunother Cancer Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Vacunas contra el Cáncer / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Límite: Aged / Aged80 / Humans / Male / Middle aged Idioma: En Revista: J Immunother Cancer Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos