Your browser doesn't support javascript.
loading
Interpretable prioritization of splice variants in diagnostic next-generation sequencing.
Danis, Daniel; Jacobsen, Julius O B; Carmody, Leigh C; Gargano, Michael A; McMurry, Julie A; Hegde, Ayushi; Haendel, Melissa A; Valentini, Giorgio; Smedley, Damian; Robinson, Peter N.
Afiliación
  • Danis D; The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA.
  • Jacobsen JOB; William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry Queen, Queen Mary University of London, EC1M 6BQ London, UK.
  • Carmody LC; The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA.
  • Gargano MA; The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA.
  • McMurry JA; University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  • Hegde A; The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA.
  • Haendel MA; University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  • Valentini G; Anacleto Lab - Dipartimento di Informatica and DSRC, Università degli Studi di Milano, Via Celoria 18, 20133 Milan, Italy; CINI National Laboratory in Artificial Intelligence and Intelligent Systems-AIIS, Rome, Italy.
  • Smedley D; William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry Queen, Queen Mary University of London, EC1M 6BQ London, UK.
  • Robinson PN; The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA. Electronic address: peter.robinson@jax.org.
Am J Hum Genet ; 108(9): 1564-1577, 2021 09 02.
Article en En | MEDLINE | ID: mdl-34289339
A critical challenge in genetic diagnostics is the computational assessment of candidate splice variants, specifically the interpretation of nucleotide changes located outside of the highly conserved dinucleotide sequences at the 5' and 3' ends of introns. To address this gap, we developed the Super Quick Information-content Random-forest Learning of Splice variants (SQUIRLS) algorithm. SQUIRLS generates a small set of interpretable features for machine learning by calculating the information-content of wild-type and variant sequences of canonical and cryptic splice sites, assessing changes in candidate splicing regulatory sequences, and incorporating characteristics of the sequence such as exon length, disruptions of the AG exclusion zone, and conservation. We curated a comprehensive collection of disease-associated splice-altering variants at positions outside of the highly conserved AG/GT dinucleotides at the termini of introns. SQUIRLS trains two random-forest classifiers for the donor and for the acceptor and combines their outputs by logistic regression to yield a final score. We show that SQUIRLS transcends previous state-of-the-art accuracy in classifying splice variants as assessed by rank analysis in simulated exomes, and is significantly faster than competing methods. SQUIRLS provides tabular output files for incorporation into diagnostic pipelines for exome and genome analysis, as well as visualizations that contextualize predicted effects of variants on splicing to make it easier to interpret splice variants in diagnostic settings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Programas Informáticos / Empalme del ARN / Sitios de Empalme de ARN / Curaduría de Datos / Enfermedades Genéticas Congénitas Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Am J Hum Genet Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Programas Informáticos / Empalme del ARN / Sitios de Empalme de ARN / Curaduría de Datos / Enfermedades Genéticas Congénitas Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Am J Hum Genet Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos