Your browser doesn't support javascript.
loading
Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment.
Li, Pinxue; Fu, Liwei; Liao, Zhiyao; Peng, Yu; Ning, Chao; Gao, Cangjian; Zhang, Daxu; Sui, Xiang; Lin, Yunfeng; Liu, Shuyun; Hao, Chunxiang; Guo, Quanyi.
Afiliación
  • Li P; School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian Dis
  • Fu L; School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian Dis
  • Liao Z; School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian Dis
  • Peng Y; School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.
  • Ning C; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
  • Gao C; School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian Dis
  • Zhang D; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
  • Sui X; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
  • Lin Y; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China. Electronic address: yunfenglin@scu.edu.cn.
  • Liu S; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China. Electronic address: clear_ann@16
  • Hao C; Institute of Anesthesia, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China. Electronic address: haochunxiang301@163.com.
  • Guo Q; School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian Dis
Biomaterials ; 278: 121131, 2021 11.
Article en En | MEDLINE | ID: mdl-34543785
Articular cartilage (AC) injury repair has always been a difficult problem for clinicians and researchers. Recently, a promising therapy based on mesenchymal stem cells (MSCs) has been developed for the regeneration of cartilage defects. As endogenous articular stem cells, synovial MSCs (SMSCs) possess strong chondrogenic differentiation ability and articular specificity. In this study, a cartilage regenerative system was developed based on a chitosan (CS) hydrogel/3D-printed poly(ε-caprolactone) (PCL) hybrid containing SMSCs and recruiting tetrahedral framework nucleic acid (TFNA) injected into the articular cavity. TFNA, which is a promising DNA nanomaterial for improving the regenerative microenvironment, could be taken up into SMSCs and promoted the proliferation and chondrogenic differentiation of SMSCs. CS, as a cationic polysaccharide, can bind to DNA through electrostatic action and recruit free TFNA after articular cavity injection in vivo. The 3D-printed PCL scaffold provided basic mechanical support, and TFNA provided a good microenvironment for the proliferation and chondrogenic differentiation of the delivered SMSCs and promoted cartilage regeneration, thus greatly improving the repair of cartilage defects. In conclusion, this study confirmed that a CS hydrogel/3D-printed PCL hybrid scaffold containing SMSCs could be a promising strategy for cartilage regeneration based on chitosan-directed TFNA recruitment and TFNA-enhanced cell proliferation and chondrogenesis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ácidos Nucleicos / Cartílago Articular / Quitosano / Células Madre Mesenquimatosas Idioma: En Revista: Biomaterials Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ácidos Nucleicos / Cartílago Articular / Quitosano / Células Madre Mesenquimatosas Idioma: En Revista: Biomaterials Año: 2021 Tipo del documento: Article