Your browser doesn't support javascript.
loading
Exploration on the drug solubility enhancement in aqueous medium with the help of endo-functionalized molecular tubes: a computational approach.
Paul, Rabindranath; Paul, Sandip.
Afiliación
  • Paul R; Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India. sandipp@iitg.ac.in.
Phys Chem Chem Phys ; 23(34): 18999-19010, 2021 Sep 14.
Article en En | MEDLINE | ID: mdl-34612438
ABSTRACT
One major problem in the pharmaceutical industry is the aqueous solubility of newly developed orally administered drug candidates. More than 50% of newly developed drug molecules suffer from low aqueous solubility. The therapeutic effects of drug molecules are majorly dependent on the bioavailability and, in essence, on the solubility of the used drug molecules. Thus, enhancement of drug solubility of sparingly soluble drug molecules is a need of modern times. Considering the high importance of drug solubility, we have computationally shown the enhancement of drug solubility for seven class II (poorly water-soluble) drug molecules in a water medium. The uses of supramolecular macrocycles have immense importance in the same field. Thus, we have used two synthetic supramolecular receptors named host-1a and host-1b to enhance the water solubility of fluorouracil, albendazole, camptothecin, clopidogrel, indomethacin, melphalan, and tolfenamic acid drug molecules. Biomedical engagements of a supramolecular receptor commence with the formation of stable host-drug complexes. These complexations enhance the water solubility of drug molecules and sustain the release rate and bioavailability of drug molecules. Thus, in this work, we focus on the formation of stable host-drug complexes in water medium. Molecular dynamics simulation is applied to analyze the structural features and the energetics involved in the host-drug complexation process. The information obtained at the atomistic level helps us gain better insights into the key interactions that operate to produce such highly stable complexes. Thus, we can propose that these two supramolecular receptors may be used as drug solubilizing agents, and patients will benefit from this theragnostic application shortly.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: India