Your browser doesn't support javascript.
loading
Computational analysis of cancer genome sequencing data.
Cortés-Ciriano, Isidro; Gulhan, Doga C; Lee, Jake June-Koo; Melloni, Giorgio E M; Park, Peter J.
Afiliación
  • Cortés-Ciriano I; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
  • Gulhan DC; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Lee JJ; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Melloni GEM; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Park PJ; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. peter_park@hms.harvard.edu.
Nat Rev Genet ; 23(5): 298-314, 2022 05.
Article en En | MEDLINE | ID: mdl-34880424
Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Límite: Humans Idioma: En Revista: Nat Rev Genet Asunto de la revista: GENETICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Límite: Humans Idioma: En Revista: Nat Rev Genet Asunto de la revista: GENETICA Año: 2022 Tipo del documento: Article