Your browser doesn't support javascript.
loading
Baseline Stiffness Modulates the Non-Linear Response to Stretch of the Extracellular Matrix in Pulmonary Fibrosis.
Júnior, Constança; Narciso, Maria; Marhuenda, Esther; Almendros, Isaac; Farré, Ramon; Navajas, Daniel; Otero, Jorge; Gavara, Núria.
Afiliación
  • Júnior C; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain.
  • Narciso M; The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
  • Marhuenda E; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain.
  • Almendros I; The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
  • Farré R; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain.
  • Navajas D; CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain.
  • Otero J; Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain.
  • Gavara N; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain.
Int J Mol Sci ; 22(23)2021 Nov 29.
Article en En | MEDLINE | ID: mdl-34884731
ABSTRACT
Pulmonary fibrosis (PF) is a progressive disease that disrupts the mechanical homeostasis of the lung extracellular matrix (ECM). These effects are particularly relevant in the lung context, given the dynamic nature of cyclic stretch that the ECM is continuously subjected to during breathing. This work uses an in vivo model of pulmonary fibrosis to characterize the macro- and micromechanical properties of lung ECM subjected to stretch. To that aim, we have compared the micromechanical properties of fibrotic ECM in baseline and under stretch conditions, using a novel combination of Atomic Force Microscopy (AFM) and a stretchable membrane-based chip. At the macroscale, fibrotic ECM displayed strain-hardening, with a stiffness one order of magnitude higher than its healthy counterpart. Conversely, at the microscale, we found a switch in the stretch-induced mechanical behaviour of the lung ECM from strain-hardening at physiological ECM stiffnesses to strain-softening at fibrotic ECM stiffnesses. Similarly, we observed solidification of healthy ECM versus fluidization of fibrotic ECM in response to stretch. Our results suggest that the mechanical behaviour of fibrotic ECM under stretch involves a potential built-in mechanotransduction mechanism that may slow down the progression of PF by steering resident fibroblasts away from a pro-fibrotic profile.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fibrosis Pulmonar / Mecanotransducción Celular / Matriz Extracelular Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fibrosis Pulmonar / Mecanotransducción Celular / Matriz Extracelular Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: España