Your browser doesn't support javascript.
loading
Rapid growth of anthropogenic organic nanoparticles greatly alters cloud life cycle in the Amazon rainforest.
Zaveri, Rahul A; Wang, Jian; Fan, Jiwen; Zhang, Yuwei; Shilling, John E; Zelenyuk, Alla; Mei, Fan; Newsom, Rob; Pekour, Mikhail; Tomlinson, Jason; Comstock, Jennifer M; Shrivastava, Manish; Fortner, Edward; Machado, Luiz A T; Artaxo, Paulo; Martin, Scot T.
Afiliación
  • Zaveri RA; Pacific Northwest National Laboratory, Richland, WA 99352, USA.
  • Wang J; Washington University in Saint Louis, Saint Louis, MO 63130, USA.
  • Fan J; Pacific Northwest National Laboratory, Richland, WA 99352, USA.
  • Zhang Y; Pacific Northwest National Laboratory, Richland, WA 99352, USA.
  • Shilling JE; Pacific Northwest National Laboratory, Richland, WA 99352, USA.
  • Zelenyuk A; Pacific Northwest National Laboratory, Richland, WA 99352, USA.
  • Mei F; Pacific Northwest National Laboratory, Richland, WA 99352, USA.
  • Newsom R; Pacific Northwest National Laboratory, Richland, WA 99352, USA.
  • Pekour M; Pacific Northwest National Laboratory, Richland, WA 99352, USA.
  • Tomlinson J; Pacific Northwest National Laboratory, Richland, WA 99352, USA.
  • Comstock JM; Pacific Northwest National Laboratory, Richland, WA 99352, USA.
  • Shrivastava M; Pacific Northwest National Laboratory, Richland, WA 99352, USA.
  • Fortner E; Aerodyne Research, Inc., Billerica, MA 01821, USA.
  • Machado LAT; National Institute for Space Research, São José dos Campos, São Paulo 12227-010, Brazil.
  • Artaxo P; Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil.
  • Martin ST; Harvard University, Cambridge, MA 02138, USA.
Sci Adv ; 8(2): eabj0329, 2022 Jan 14.
Article en En | MEDLINE | ID: mdl-35020441
ABSTRACT
Aerosol-cloud interactions remain uncertain in assessing climate change. While anthropogenic activities produce copious aerosol nanoparticles smaller than 10 nanometers, they are too small to act as efficient cloud condensation nuclei (CCN). The mechanisms responsible for particle growth to CCN-relevant sizes are poorly understood. Here, we present aircraft observations of rapid growth of anthropogenic nanoparticles downwind of an isolated metropolis in the Amazon rainforest. Model analysis reveals that the sustained particle growth to CCN sizes is predominantly caused by particle-phase diffusion-limited partitioning of semivolatile oxidation products of biogenic hydrocarbons. Cloud-resolving numerical simulations show that the enhanced CCN concentrations in the urban plume substantially alter the formation of shallow convective clouds, suppress precipitation, and enhance the transition to deep convective clouds. The proposed nanoparticle growth mechanism, expressly enabled by the abundantly formed semivolatile organics, suggests an appreciable impact of anthropogenic aerosols on cloud life cycle in previously unpolluted forests of the world.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos