Your browser doesn't support javascript.
loading
The drip loss inhibitory mechanism of nanowarming in jumbo squid (Dosidicus gigas) mantles: protein structure and molecular dynamics simulation.
Li, Yue; Bu, Ying; Guo, Huifang; Zhu, Wenhui; Li, Jianrong; Li, Xuepeng.
Afiliación
  • Li Y; College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China.
  • Bu Y; College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China.
  • Guo H; College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China.
  • Zhu W; College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China.
  • Li J; Department of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, Liaoning, China.
  • Li X; College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China.
J Sci Food Agric ; 102(10): 4313-4321, 2022 Aug 15.
Article en En | MEDLINE | ID: mdl-35043406
ABSTRACT

BACKGROUND:

The magnetic nanoparticles plus microwave thawing (MNPMT), a new rewarming technology entitled 'nanowarming', can serve as an effective method to achieve rapid and uniform thawing, thus reducing drip loss. The purpose of this study was to decipher the drip loss inhibitory mechanism of MNPMT in jumbo squid (Dosidicus gigas) from the perspectives of protein structure and ice crystal recrystallization. A number of different techniques such as dynamic rheology, Raman spectra, intrinsic fluorescence measurement, and ultraviolet (UV) absorption spectra were conducted to analyze myofibrillar protein conformation and stability of jumbo squid. Scanning electron microscopy (SEM) and myofibrillar fragmentation index (MFI) were used to observe the growth of ice crystals. The interaction between magnetic nanoparticles (MNPs) and ice crystals was studied by using molecular dynamic (MD) simulation.

RESULTS:

MNPMT exhibited the highest storage modulus (G') value at 90 °C, suggesting the protein conformation was more stable. The increase in α-helices, fluorescence intensity and characteristic absorption peak of MNPMT illustrated that MNPMT can effectively maintain the secondary and tertiary structure of the protein. Compared with cold storage thawing (CST) and microwave thawing (MT), the MFI value of MNPMT was significantly decreased (P < 0.01). The result of MD simulation showed that MNPs displayed a tendency to gradually approach the surface of ice crystals, and induced a certain degree of damage to the ice crystal surface, thereby markedly inhibiting ice crystal recrystallization.

CONCLUSION:

MNPMT can reduce the drip loss by keeping the protein conformation stable and inhibiting the recrystallization of ice crystals during the thawing process. © 2022 Society of Chemical Industry.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular / Hielo Límite: Animals Idioma: En Revista: J Sci Food Agric Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular / Hielo Límite: Animals Idioma: En Revista: J Sci Food Agric Año: 2022 Tipo del documento: Article País de afiliación: China