Your browser doesn't support javascript.
loading
Millisecond-Range Time-Resolved Bioimaging Enabled through Ultralong Aqueous Phosphorescence Probes.
Cui, Mingyue; Dai, Peiling; Ding, Jiali; Li, Manjing; Sun, Rong; Jiang, Xin; Wu, Menglin; Pang, Xueke; Liu, Mingzhu; Zhao, Qiang; Song, Bin; He, Yao.
Afiliación
  • Cui M; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China.
  • Dai P; State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023
  • Ding J; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China.
  • Li M; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China.
  • Sun R; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China.
  • Jiang X; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China.
  • Wu M; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China.
  • Pang X; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China.
  • Liu M; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China.
  • Zhao Q; State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023
  • Song B; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China.
  • He Y; Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China.
Angew Chem Int Ed Engl ; 61(14): e202200172, 2022 03 28.
Article en En | MEDLINE | ID: mdl-35098631
Probes featuring room-temperature phosphorescence (RTP) are promising tools for time-resolved imaging. It is worth noting that the time scale of time-resolved bioimaging generally ranges around the microsecond level, because of the short-lived emission. Herein, the first example of millisecond-range time-resolved bioimaging is illustrated, which is enabled through a kind of ultralong aqueous phosphorescence probes (i.e., cyclo-(Arg-Gly-AspD-Tyr-Cys)-conjugated zinc-doped silica nanospheres), with a RTP emission lasting for ≈5 s and a lifetime as long as 743.7 ms. We demonstrate that live cells and deep tumor tissue in mice can be specifically targeted through immune-phosphorescence imaging, with a high signal-to-background ratio (SBR) value of ≈69 for in vitro imaging, and ≈627 for in vivo imaging, respectively. We further show that, compared to that of fluorescence imaging, the SBR enhancement of millisecond-range time-resolved in vivo bioimaging is up to 105 times.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Luminiscencia / Neoplasias Límite: Animals Idioma: En Revista: Angew Chem Int Ed Engl Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Luminiscencia / Neoplasias Límite: Animals Idioma: En Revista: Angew Chem Int Ed Engl Año: 2022 Tipo del documento: Article País de afiliación: China